Chlorophyll Synthesis

  • Robert D. Willows
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 23)

Chlorophyll is the dominant pigment in a mature plant cell, whether in the leaf of a plant or in the abundant algal species. Chlorophyll is synthesized within the chloroplast from a plentiful precursor, the amino acid glutamate. From glutamate to the tetrapyrrole protoporphyrin IX, at which the pathway branches between chlorophyll and heme, the reactions occur in the plastid stroma and are catalyzed by soluble enzymes.


Chlorophyll Biosynthesis Chlorophyll Synthesis Protochlorophyllide Oxidoreductase Monomethyl Ester Glutamyl tRNA Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson HY, Hiller RG and Walmsley J (1997) Protochloro-phyllide reduction and greening in angiosperms-an evolu-tionary perspective. J Photochem Photobiol B:Biol 41: 201-221CrossRefGoogle Scholar
  2. Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bac-teria to gymnosperms. J Photochem Photobiol B:Biol 43: 87-100CrossRefGoogle Scholar
  3. Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH:protochlorophyllide oxidore-ductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Phys-iol 108: 1505-1517CrossRefGoogle Scholar
  4. Armstrong GA, Apel K and R üdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5: 40-44PubMedCrossRefGoogle Scholar
  5. Aronsson H, Sohrt K and Soll J (2000) NADPH: protochloro-phyllide oxidoreductase uses the general import route into chloroplasts. Biol Chem 381: 1263-1267PubMedCrossRefGoogle Scholar
  6. Aronsson H, Sundqvist C and Dahlin C (2003) POR hits the road: import and assembly of a plastid protein. Plant Mol Biol 51: 1-7PubMedCrossRefGoogle Scholar
  7. Barnes SA, Nishizawa NK, Quaggio RB, Whitelam GC and Chua N-H (1996) Far-red light blocks greening of Arabidop-sis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8: 601-615PubMedCrossRefGoogle Scholar
  8. Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photo-synth Res 60: 43-73CrossRefGoogle Scholar
  9. Belyaeva OB, Sundqvist C and Litvin FF (2000) Nonpigment components of the photochlorophyllide photoactive complex: studies of low-temperature blue-green fluorescence spectra. Memb Cell Biol 13: 337-345Google Scholar
  10. Block MA, Tewari AK, Albrieux C, Mar échal E and Joyard J (2002) The plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase is located in both en-velope and thylakoid chloroplast membranes. Eur J Biochem 269: 240-248PubMedCrossRefGoogle Scholar
  11. Boddi B, Oravecz AR and Lehoczki E (1995) Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31: 411-420Google Scholar
  12. Bollivar DW (2003) Intermediate steps in chlorophyll biosyn-thesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 13, pp 49-70. Academic Press, San Diego.Google Scholar
  13. Bollivar DW and Beale SI (1995) Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosynth Res 43: 113-124CrossRefGoogle Scholar
  14. Bollivar DW and Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase-characterization and partial purification from Chlamy-domonas reinhardtii and Synechocystis sp PCC 6803. Plant Physiol 112: 105-114PubMedGoogle Scholar
  15. Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622-640PubMedCrossRefGoogle Scholar
  16. Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differen-tially expressed in barley. Plant J 9: 867-878PubMedCrossRefGoogle Scholar
  17. Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Nat Acad Sci USA 90: 7134-7138PubMedCrossRefGoogle Scholar
  18. Cahoon AB and Timko MP (2000) yellow-in-the-dark mutants of Chlamydomonas lack the CHLL subunit of light-independent protochlorophyllide reductase. Plant Cell 12: 559-568PubMedCrossRefGoogle Scholar
  19. Chahdi MAO, Schoefs B and Franck F (1998) Isola-tion and characterization of photoactive complexes of NADPH:protochlorophyllide oxidoreductase from wheat. Planta 206: 673-680CrossRefGoogle Scholar
  20. Chekounova E, Voronetskaja V, Papenbrock J, Grimm B and Beck CF (2001) Characterization of Chlamydomonas mutants defective in the H-subunit of Mg-chelatase. Mol Gen Genet 266: 363-373.Google Scholar
  21. Confalonieri F and Duguet M (1995) A 200-amino acid ATPase module in search of a basic function. Bioessays 17: 639-650PubMedCrossRefGoogle Scholar
  22. Coomber SA, Chaudhri M, Connor A, Britton G and Hunter CN (1990) Localized transposon Tn5 mutagenesis of the pho-tosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4: 977-989PubMedCrossRefGoogle Scholar
  23. Dahlin C, Aronsson H, Almkvist J and Sundqvist C (2000) Protochlorophyllide-independent import of two NADPH:Pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids. Physiol Plant 109: 298-303CrossRefGoogle Scholar
  24. Eckhardt U, Grimm B and H örtensteiner S (2004) Recent ad-vances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56: 1-14PubMedCrossRefGoogle Scholar
  25. Espineda CE, Linford AS, Devine D and Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 96: 10507-10511PubMedCrossRefGoogle Scholar
  26. Falbel TG and Staehelin LA (1994) Characterization of a fam-ily of chlorophyll-deficient wheat (Triticum) and a barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol 104: 639-648PubMedCrossRefGoogle Scholar
  27. Ferreira GC (1999) Ferrochelatase. Internatl J Biochem Cell Biol 31: 995-1000CrossRefGoogle Scholar
  28. Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD and Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311: 111-122PubMedCrossRefGoogle Scholar
  29. Forreiter C and Apel K (1993) Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase poly-peptides in mountain pine (Pinus mugo). Planta 190: 536-545PubMedCrossRefGoogle Scholar
  30. Forreiter C, Van Cleve B, Schmidt A and Apel K (1990) Evidence for a general light-dependent negative control of NADPH-protochlorophyllide oxidoreductase in angiosperms. Planta 183: 126-132Google Scholar
  31. Franck F, Sperling U, Frick G, Pochert B, Van Cleve B, Apel K and Armstrong GA (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol 124: 1678-1696PubMedCrossRefGoogle Scholar
  32. Freeman TP, Duysen ME and Williams ND (1987) Effects of gene dosage on light harvesting chlorophyll accumulation, chloro-plast development, and photosynthesis in wheat. Can J Bot 65: 2118-2123CrossRefGoogle Scholar
  33. Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37: 411-421PubMedGoogle Scholar
  34. Fujita Y and Bauer C (2003) The light-independent protochloro-phyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 109-156. Academic Press, San DiegoGoogle Scholar
  35. Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H and Takamiya K (2000) NADPH-protochlorophyllide ox-idoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth Res 64: 147-154PubMedCrossRefGoogle Scholar
  36. Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloro-plasts, and in situ localization of the transcript and protein. Plant Physiol 111: 61-71PubMedCrossRefGoogle Scholar
  37. Gibson LC, Jensen PE and Hunter CN (1999) Magnesium chelatase from Rhodobacter sphaeroides: initial characteri-zation of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J 337: 243-251PubMedCrossRefGoogle Scholar
  38. Gorchein A, Gibson LCD and Hunter CN (1993) Gene expres-sion and control of enzymes for synthesis of magnesium pro-toporphyrin monomethyl ester in Rhodobacter sphaeroides. Biochem Soc Trans 21: 201SPubMedGoogle Scholar
  39. Granick S (1948) Protoporphyrin 9 as a precursor of chlorophyll. J Biol Chem 172: 717-727PubMedGoogle Scholar
  40. Grimm B (2003) Regulatory mechanisms of eukaryotic tetrapyr-role biosynthesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 1-32. Academic Press, San DiegoGoogle Scholar
  41. Guo R, Luo M and Weinstein JD (1998) Magnesium chelatase from developing pea leaves. Plant Physiol 116: 605-615CrossRefGoogle Scholar
  42. Hansson A, Kannangara CG, von Wettstein D and Hansson M (1999) Molecular basis for semidominance of missense mu-tations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Nat Acad Sci USA 96: 1744-1749PubMedCrossRefGoogle Scholar
  43. Hansson A, Willows RD, Roberts TH and Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Nat Acad Sci USA 99: 13944-13949PubMedCrossRefGoogle Scholar
  44. He ZH, Li JM, Sundqvist C and Timko MP (1994) Leaf devel-opmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L). Plant Physiol 106: 537-546PubMedGoogle Scholar
  45. Hennig M, Grimm B, Jenny M, M üller R and Jansonius JN (1994) Crystallization and preliminary X-ray analysis of wild-type and K272A mutant glutamate 1-semialdehyde aminotrans-ferase from Synechococcus. J Mol Biol 242: 591-594PubMedCrossRefGoogle Scholar
  46. Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate 1-semialdehyde amino-mutase: an α2 -dimeric vitamin-B6 -dependent enzyme with asymmetry in structure and active site reactivity. Proc Nat Acad Sci USA 94: 4866-4871PubMedCrossRefGoogle Scholar
  47. Henningsen KW, Boynton JE and von Wettstein D (1993) Mutants at xantha and albina loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.). Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 42: 1-348Google Scholar
  48. Hinchigeri SB and Richards WR (1982) The reaction mecha-nism of S-adenosyl-L-methionine:magnesium protoporphyrin methyltransferase from Euglena gracilis. Photosynthetica 16: 554-560Google Scholar
  49. Hinchigeri SB, Chan JCS and Richards WR (1981) Purifica-tion of S-adenosyl-L-methionine: magnesium protoporphyrin methyltransferase by affinity chromatography. Photosynthet-ica 15: 351-359Google Scholar
  50. Holtorf H and Apel K (1996) Transcripts of the two NADPH protochlorophyllide oxidereductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. Plant Mol Biol 31: 387-392PubMedCrossRefGoogle Scholar
  51. Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differ-entially regulated by light in barley (Hordeum vulgare L.). Proc Nat Acad Sci USA 92: 3254-3258PubMedCrossRefGoogle Scholar
  52. Hudson A, Carpenter R, Doyle S and Coen ES (1993) Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12: 3711-3719PubMedGoogle Scholar
  53. Ilag LL, Kumar AM and Soll D (1994) Light regulation of chloro-phyll biosynthesis at the level of 5- aminolevulinate formation in Arabidopsis. Plant Cell 6: 265-275PubMedCrossRefGoogle Scholar
  54. Im CS and Beale SI (2000) Identification of possible signal trans-duction components mediating light induction of the Gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas reinhardtii. Planta 210: 999-1005PubMedCrossRefGoogle Scholar
  55. Im CS, Matters GL and Beale SI (1996) Calcium and calmodulin are involved in blue light induction of theGsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. Plant Cell 8: 2245-2253PubMedCrossRefGoogle Scholar
  56. Jensen PE, Gibson LCD, Henningsen KW and Hunter CN (1996a) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662-16667CrossRefGoogle Scholar
  57. Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stum-mann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996b) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250: 383-394Google Scholar
  58. Jensen PE, Gibson LCD and Hunter CN (1998) Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocys-tis PCC6803. Biochem J 334: 335-344PubMedGoogle Scholar
  59. Jordan PM (1994) The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase. In: Chad-wick DJ and Ackrill K (eds) The Biosynthesis of the Tetrapyr-role Pigments, Ciba Foundation Symposium 180, pp 70-89. John Wiley & Sons, ChichesterGoogle Scholar
  60. Joyard J, Teyssier E, Mi ège C, Berny-Seigneurin D, Mar èchal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope mem-branes. Plant Physiol 118: 715-723PubMedCrossRefGoogle Scholar
  61. Kim C and Apel K (2004) Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 16: 88-98PubMedCrossRefGoogle Scholar
  62. Kim JS and Rebeiz CA (1995) An improved analysis for determi-nation of monovinyl and divinyl protoporphyrin IX. J Photosci 2: 103-106Google Scholar
  63. Kim JS, Kolossov V and Rebeiz CA (1997) Chloroplast biogen-esis 76. Regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyl-lide a is controlled by plastid membrane and stromal factors. Photosynthetica 34: 569-581CrossRefGoogle Scholar
  64. Klement H, Oster U and R üdiger W (2000) The influence of glyc-erol and chloroplast lipids on the spectral shifts of pigments associated with NADPH:protochlorophyllide oxidoreductase from Avena sativa L. FEBS Lett 480: 306-310PubMedCrossRefGoogle Scholar
  65. Kolossov VL and Rebeiz CA (2003) Chloroplast biogenesis 88. Protochlorophyllide b occurs in green but not in etiolated plants. J Biol Chem 278: 49675-49678PubMedCrossRefGoogle Scholar
  66. Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1337-1346PubMedGoogle Scholar
  67. Kovacheva S, Ryberg M and Sundqvist C (2000) ADP/ATP and protein phosphorylation dependence of phototransformable protochlorophyllide in isolated etioplast membranes. Photo-synth Res 64: 127-136CrossRefGoogle Scholar
  68. Kuroda H, Masuda T, Ohta H, Shioi Y and Takamiya K (1995) Light-enhanced gene expression of NADPH-protochlorophyllide oxidoreductase in cucumber. Biochem Biophys Res Commun 210: 310-316PubMedCrossRefGoogle Scholar
  69. Kuroda H, Masuda T, Fusada N, Ohta H and Takamiya K (2000) Expression of NADPH-protochlorophyllide oxidoreductase gene in fully green leaves of cucumber. Plant Cell Physiol 41: 226-229PubMedGoogle Scholar
  70. Kuroda H, Masuda T, Fusada N, Ohta H and Takamiya K (2001) Cytokinin-induced transcriptional activation of NADPH-protochlorophyllide oxidoreductase gene in cucumber. J Plant Res 114: 1-7CrossRefGoogle Scholar
  71. Kusnetsov V, Herrmann RG, Kulaeva ON and Oelmuller R (1998) Cytokinin stimulates and abscisic acid inhibits green-ing of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidore-ductase. Mol Gen Genet 259: 21-28PubMedGoogle Scholar
  72. Lake V and Willows RD (2003) Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii us-ing real-time RT-PCR: magnesium chelatase chlH, chlD and chlI gene expression. Photosynth Res 77: 69-76PubMedCrossRefGoogle Scholar
  73. Lake V, Olsson U, Willows RD and Hansson M (2004) AT-Pase activity of magnesium chelatase subunit I is required to maintain subunit D in vivo. Eur J Biochem 271: 2182-2188PubMedCrossRefGoogle Scholar
  74. Larkin RM, Alonso JM, Ecker JR and Chory J (2003) Gun4, a regulator of chlorophyll synthesis and intracellular signalling. Science 299: 902-906PubMedCrossRefGoogle Scholar
  75. Lebedev N and Timko MP (1998) Protochlorophyllide photore-duction. Photosynth Res 58: 5-23CrossRefGoogle Scholar
  76. Lenti K, Fodor F and Boddi B (2002) Mercury inhibits the activ-ity of the NADPH:protochlorophyllide oxidoreductase (POR). Photosynthetica 40: 145-151CrossRefGoogle Scholar
  77. Li J and Timko MP (1996) The pc-1 phenotype of Chlamy-domonas reinhardtii results from a deletion mutation in the nu-clear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30: 15-37PubMedCrossRefGoogle Scholar
  78. Li J, Goldschmidt-Clermont M and Timko MP (1993) Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 1817-1829PubMedCrossRefGoogle Scholar
  79. Lidholm J and Gustafsson P (1991) Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol 17: 787-798PubMedCrossRefGoogle Scholar
  80. Liu XQ, Xu H and Huang C (1993) Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297-308PubMedCrossRefGoogle Scholar
  81. Marrison JL, Schunmann PHD, Ougham HJ and Leech RM (1996) Subcellular visualization of gene transcripts encod-ing key proteins of the chlorophyll accumulation process in developing chloroplasts. Plant Physiol 110: 1089-1096PubMedGoogle Scholar
  82. Mascia P (1978) An analysis of precursors accumulated by several chlorophyll biosynthetic mutants of maize. Mol Gen Genet 161: 237-244CrossRefGoogle Scholar
  83. Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H and Takamiya K (2002) Identification of two differen-tially regulated isoforms of protochlorophyllide oxidoreduc-tase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74: 165-172PubMedCrossRefGoogle Scholar
  84. Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosyn-thetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617-629PubMedCrossRefGoogle Scholar
  85. Matters GL and Beale SI (1995) Blue-light-regulated expression of genes for two early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 109: 471-479PubMedGoogle Scholar
  86. Meskauskiene R and Apel K (2002) Interaction of FLU, a nega-tive regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532: 27-30PubMedCrossRefGoogle Scholar
  87. Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R and Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 98: 12826-12831PubMedCrossRefGoogle Scholar
  88. Mochizuki N, Brusslan JA, Larkin R, Nagatani A and Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Nat Acad Sci USA 98: 2053-2058PubMedCrossRefGoogle Scholar
  89. Moller MG, Petersen BL, Kannangara CG, Stummann BM and Henningsen KW (1997) Chlorophyll biosynthetic en-zymes and plastid membrane structures in mutants of barley (Hordeum vulgare L). Hereditas 127: 181-191CrossRefGoogle Scholar
  90. Moseley J, Quinn J, Eriksson M and Merchant S (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19: 2139-2151PubMedCrossRefGoogle Scholar
  91. Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M and Merchant S (2002) Reciprocal expression of two candidate di-iron enzymes affecting pho-tosystem I and light-harvesting complex accumulation. Plant Cell 14: 673-688PubMedCrossRefGoogle Scholar
  92. Mostowska A, Siedlecka M and Parys E (1996) Effect of 2,2 -bipyridyl, a photodynamic herbicide, on chloroplast ultra-structure, pigment content and photosynthesis rate in pea seedlings. Acta Physiol Plant 18: 153-164Google Scholar
  93. Nagata N, Tanaka R, Satoh S and Tanaka A (2005) Identifica-tion of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233-240PubMedCrossRefGoogle Scholar
  94. Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H and Takamiya K (1998) Cloning and Expression of the soybean Chlh gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent Chlh protein within the chloroplast. Plant Cell Physiol 39: 275-284PubMedGoogle Scholar
  95. Nguyen LV (1995) Transposon Tagging and Isolation of the Sul-fur Gene in Tobacco (Nicotiana tabacum), Ph.D. Thesis. North Carolina State University, Raleigh, NCGoogle Scholar
  96. Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H and Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474: 133-136PubMedCrossRefGoogle Scholar
  97. Oster U and R üdiger W (1997) The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta 110: 420-423Google Scholar
  98. Oster U, Brunner H and R üdiger W (1996) The greening process in cress seedlings. 5. Possible interference of chlorophyll pre-cursors, accumulated after Thujaplicin treatment, with light-regulated expression of Lhc genes. J Photochem Photobiol B:Biol 36: 255-261CrossRefGoogle Scholar
  99. Oster U, Bauer CE and R üdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterol-ogous expression in Escherichia coli. J Biol Chem 272: 9671-9676PubMedCrossRefGoogle Scholar
  100. Oster U, Tanaka R, Tanaka A and R üdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305-310PubMedCrossRefGoogle Scholar
  101. Papenbrock J, Mock H-P, Kruse E and Grimm B (1999) Expres-sion studies in tetrapyrrole biosynthesis. Inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208: 264-273CrossRefGoogle Scholar
  102. Papenbrock J, Mock HP, Tanaka R, Kruse E and Grimm B (2000a) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122: 1161-1169CrossRefGoogle Scholar
  103. Papenbrock J, Pfundel E, Mock H-P and Grimm B (2000b) De-creased and increased expression of the subunit CHL I dimin-ishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J 22: 155-164CrossRefGoogle Scholar
  104. Parham R and Rebeiz CA (1992) Chloroplast biogenesis: (4-vinyl)chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme. Biochemistry 31: 8460-8464PubMedCrossRefGoogle Scholar
  105. Parham R and Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231: 164-169PubMedCrossRefGoogle Scholar
  106. Petersen BL, Moller MG, Jensen PE and Henningsen KW (1999) Identification of the Xan-g gene and expression of the Mg-chelatase encoding genes Xan-f, -g and -h in mutant and wild type barley (Hordeum vulgare L.). Hereditas 131: 165-170CrossRefGoogle Scholar
  107. Pettigrew R, Driscoll CJ and Rienits KG (1969) A spontaneous chlorophyll mutant in hexaploid wheat. Heredity 24: 481-487CrossRefGoogle Scholar
  108. Pinta V, Picaud M, Reiss-Husson F and Astier C (2002) Rubri-vivax gelatinosus acsF (previously orf358) codes for a con-served, putative binuclear-iron-cluster-containing protein in- volved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184: 746-753PubMedCrossRefGoogle Scholar
  109. Pontoppidan B and Kannangara CG (1994) Purification and par-tial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529-537PubMedCrossRefGoogle Scholar
  110. P öpperl G, Oster U, Blos I and R üdiger W (1997) Magnesium chelatase of Hordeum vulgare L is not activated by light but inhibited by pheophorbide. Z Naturforsch C 52: 144-152Google Scholar
  111. Porra RJ and Scheer H (2001) 18 O and mass spectrometry in chlorophyll research: derivation and loss of oxygen atoms at the periphery of the chlorophyll macrocycle during biosynthe-sis, degradation and adaptation. Photosynth Res 66: 159-175CrossRefGoogle Scholar
  112. Porra RJ, Schafer W, Katheder I and Scheer H (1995) The derivation of the oxygen atoms of the 13(1)-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: evidence for an anaerobic pathway for the formation of isocyclic ring E. FEBS Lett 371: 21-24PubMedCrossRefGoogle Scholar
  113. Porra RJ, Schaefer W, Gad'on N, Katheder I, Drews G and Scheer H (1996) Origin of the two carbonyl oxygens of bac-teriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mecha-nism for 3-acetyl group formation. Eur J Biochem 239: 85-92PubMedCrossRefGoogle Scholar
  114. Rebeiz CA, Parham R, Fasoula DA and Ioannides IM (1994) Chlorophyll a biosynthetic heterogeneity. In: Chadwick DJ and Ackrill K (eds) Ciba Found Symp, Vol 180, pp 177-189; 190-173. John Wiley and Sons, West Sussex.Google Scholar
  115. Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323-343PubMedCrossRefGoogle Scholar
  116. Reinbothe C, Apel K and Reinbothe S (1995) A light-induced protease from barley plastids degrades NADPH, protochloro-phyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206-6212PubMedGoogle Scholar
  117. Reinbothe C, Lebedev N and Reinbothe S (1999) A protochloro-phyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397: 80-84CrossRefGoogle Scholar
  118. Reinbothe C, Buhr F, Pollmann S and Reinbothe S (2003) In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 278: 807-815PubMedCrossRefGoogle Scholar
  119. Reinbothe S, Reinbothe C, Runge S and Apel K (1995a) Enzy-matic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol 129: 299-308CrossRefGoogle Scholar
  120. Reinbothe S, Runge S, Reinbothe C, Van CB and Apel K (1995b) Substrate-dependent transport of the NADPH:protochloro-phyllide oxidoreductase into isolated plastids. Plant Cell 7: 161-172CrossRefGoogle Scholar
  121. Reinbothe S, Reinbothe C, Apel K and Lebedev N (1996) Evolu-tion of chlorophyll biosynthesis-the challenge to survive pho-tooxidation. Cell 86: 703-705PubMedCrossRefGoogle Scholar
  122. Reinbothe S, Mache R and Reinbothe C (2000) A second, substrate-dependent site of protein import into chloroplasts. Proc Nat Acad Sci USA 97: 9795-9800PubMedCrossRefGoogle Scholar
  123. Reinbothe S, Pollmann S and Reinbothe C (2003) In situ con-version of protochlorophyllide b to protochlorophyllide a in barley. Evidence for a novel role of 7-formyl reductase in the prolamellar body of etioplasts. J Biol Chem 278: 800-806PubMedCrossRefGoogle Scholar
  124. Reindl A, Reski R, Lerchl J, Grimm B and Al-awadi A (2001) Plant S-adenosylmethionin:Mg protoporphyrin IX-O-methyltransferase and cDNA and transgenic plants with altered chlorophyll content and/or herbicide tolerance. PCT Appl Wo0109355, 70 pp. Basf Aktiengesellschaft, GermanyGoogle Scholar
  125. Reiss C and Beale SI (1995) External calcium requirements for light induction of chlorophyll accumulation and its enhance-ment by red light and cytokinin pretreatments in excised etiolated cucumber cotyledons. Planta 196: 635-641CrossRefGoogle Scholar
  126. Reith ME and Munholland J (1995) Complete nucleotide se-quence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333-335CrossRefGoogle Scholar
  127. Richards WR, Chan JCS and Hinchigeri SB (1981) Affinity chro-matographic purification of an enzyme of chlorophyll synthe-sis. Photosynth, Proc 5th Int Congr, pp 243-252Google Scholar
  128. Rissler HM, Collakova E, DellaPenna D, Whelan J and Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128: 770-779PubMedCrossRefGoogle Scholar
  129. Roitgrund C and Mets LJ (1990) Localization of two novel chloroplast genome functions: trans-splicing of RNA and pro-tochlorophyllide reduction. Curr Genet 17: 147-153CrossRefGoogle Scholar
  130. R üdiger W (2002) Biosynthesis of chlorophyll b and the chloro-phyll cycle. Photosynth Res 74: 184-193Google Scholar
  131. R üdiger W (2003) The last steps of chlorophyll biosynthesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 71-108. Academic Press, San DiegoGoogle Scholar
  132. Runge S, Cleve Bv, Lebedev N, Armstrong G and Apel K (1995) Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta 197: 490-500PubMedCrossRefGoogle Scholar
  133. Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP and Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Nat Acad Sci USA 102: 5886-5891PubMedCrossRefGoogle Scholar
  134. Schmid HC, Oster U, Kogel J, Lenz S and R üdiger W (2001) Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem 382: 903-911PubMedCrossRefGoogle Scholar
  135. Schoefs B (2001a) The light-dependent protochlorophyllide re-duction: from a photoprotecting mechanism to a metabolic reaction. Rec Res Develop Plant Physiol 2: 241-258Google Scholar
  136. Schoefs B (2001b) The protochlorophyllide-chlorophyllide cy-cle. Photosynth Res 70: 257-271CrossRefGoogle Scholar
  137. Schubert W-D, Moser J, Schauer S, Heinz DW and Jahn D (2002) Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth Res 74: 205-215PubMedCrossRefGoogle Scholar
  138. Schulz R, Steinmuller K, Klaas M, Forreiter C, Rasmussen S, Hiller C and Apel K (1989) Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217: 355-361PubMedCrossRefGoogle Scholar
  139. Schunmann PH and Ougham HJ (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol 31: 529-537PubMedCrossRefGoogle Scholar
  140. Sears LMS and Sears ER (1968) The mutants chlorina-1 and Hermsen’s virescent. In: Finlay KW and Shepherd KW (eds) Third International Wheat Genetics Symposium, Canberra, pp 299-305Google Scholar
  141. Shepherd M, Reid JD and Hunter CN (2003) Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochem J 371: 351-360PubMedCrossRefGoogle Scholar
  142. Skinner J and Timko MP (1998) Loblolly pine (Pinus taeda L.) contains multiple expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39: 795-806PubMedGoogle Scholar
  143. Soll J, Schultz G, R üdiger W and Benz J (1983) Hydrogenation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849-854PubMedCrossRefGoogle Scholar
  144. Spano AJ, He Z, Michel H, Hunt DF and Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18: 967-972PubMedCrossRefGoogle Scholar
  145. Sperling U, van Cleve B, Frick G, Apel K and Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photoox-idative damage. Plant J 12: 649-658PubMedCrossRefGoogle Scholar
  146. Sperling U, Franck F, Vancleve B, Frick G, Apel K and Arm-strong GA (1998) Etioplast differentiation in Arabidopsis-both PORA and PORB restore the prolamellar body and photoac-tive protochlorophyllide-F655 to the Cop1 photomorphogenic mutant. Plant Cell 10: 283-296PubMedCrossRefGoogle Scholar
  147. Strand A, Asami T, Alonso J, Ecker JR and Chory J (2003) Chloroplast to nucleus communication triggered by accumu-lation of Mg-protoporphyrinIX. Nature 421: 79-83PubMedCrossRefGoogle Scholar
  148. Su Q, Frick G, Armstrong G and Apel K (2001) PORC of Ara-bidopsis thaliana: a third light- and NADPH-dependent pro-tochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805-813PubMedCrossRefGoogle Scholar
  149. Suzuki JY and Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929-940PubMedCrossRefGoogle Scholar
  150. Suzuki JY and Bauer CE (1995) A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Nat Acad Sci USA 92: 3749-3753PubMedCrossRefGoogle Scholar
  151. Suzuki JY, Bollivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31: 61-89PubMedCrossRefGoogle Scholar
  152. Suzuki T, Takio S, Yamamoto I and Satoh T (2001) Charac-terization of cDNA of the liverwort phytochrome gene, and phytochrome involvement in the light-dependent and light-independent protochlorophyllide oxidoreductase gene expres-sion in Marchantia paleacea var. diptera. Plant Cell Physiol 42: 576-582PubMedCrossRefGoogle Scholar
  153. Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chloro-phyll b formation from chlorophyll a. Proc Nat Acad Sci USA 95: 12719-12723PubMedCrossRefGoogle Scholar
  154. Tanaka R, Oster U, Kruse E, R üdiger W and Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120: 695-704PubMedCrossRefGoogle Scholar
  155. Taylor DP, Cohen SN, Clark WG and Marrs BM (1983) Align-ment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol 154: 580-590PubMedGoogle Scholar
  156. Teakle GR and Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296: 225-230PubMedGoogle Scholar
  157. Thomas RM and Singh VP (1995) Effects of three triazole derivatives on mercury induced inhibition of chlorophyll and carotenoid accumulation in cucumber cotyledons. Indian J Plant Physiol 38: 313-316Google Scholar
  158. Thomas RM and Singh VP (1996) Reduction of cadmium-induced inhibition of chlorophyll and carotenoid accumulation in Cucumis sativus L. by uniconazole (S. 3307). Photosynthet-ica 32: 145-148Google Scholar
  159. Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159-162PubMedCrossRefGoogle Scholar
  160. Ujwal ML, McCormac AC, Goulding A, Kumar AM, Soll D and Terry MJ (2002) Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidop-sis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Mol Biol 50: 83-91PubMedCrossRefGoogle Scholar
  161. Vale RD (2000) AAA proteins. Lords of the ring. J Cell Biol 150: F13-F19PubMedCrossRefGoogle Scholar
  162. Vavilin DV and Vermaas WFJ (2002) Regulation of the tetrapyr-role biosynthetic pathways leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115: 9-24PubMedCrossRefGoogle Scholar
  163. Vijayan P, Whyte BJ and Castelfranco PA (1992) A spec-trophotometric analysis of the magnesium protoporphyrin IX monomethyl ester (oxidative) cyclase. Plant Physiol Biochem 30: 271-278Google Scholar
  164. Vothknecht UC, Kannangara CG and von Wettstein D (1998) Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47: 513-519PubMedCrossRefGoogle Scholar
  165. Walker CJ and Weinstein JD (1991) In vitro assay of the chloro-phyll biosynthetic enzyme magnesium chelatase: Resolution of the activity into soluble and membrane bound fractions. Proc Nat Acad Sci USA 88: 5789-5793PubMedCrossRefGoogle Scholar
  166. Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl func-tionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599-602PubMedGoogle Scholar
  167. Walker CJ, Castelfranco PA and Whyte BJ (1991a) Synthesis of divinyl protochlorophyllide. Enzymological properties of the magnesium-protoporphyrin IX monomethyl ester oxida-tive cyclase system. Biochem J 276: 691-697Google Scholar
  168. Walker CJ, Castelfranco PA and Whyte BJ (1991b) Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276: 691-697Google Scholar
  169. Walker CJ, Kannangara CG and vonWettstein D (1997) Identifi-cation of xantha l-35 and viridis k-23 as mutants of the Mg-protoporphyrin monomethyl ester cyclase of chlorophyll syn-thesis in barley (Hordeum vulgare). Plant Physiol 114: 708-708Google Scholar
  170. Wang WY, Wang WL, Boynton JE and Gillham NW (1974) Ge-netic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-IX to magnesium protoporphyrin. J Cell Biol 63: 806-823PubMedCrossRefGoogle Scholar
  171. Whyte BJ and Castelfranco PA (1993) Further observations on the magnesium-protoporphyrin IX monomethyl ester (oxida-tive) cyclase system. Biochem J 290: 355-359PubMedGoogle Scholar
  172. Whyte BJ and Griffiths WT (1993) 8-vinyl reduction and chloro-phyll a biosynthesis in higher plants. Biochem J 291: 939-944PubMedGoogle Scholar
  173. Whyte BJ, Fijayan P and Castelfranco PA (1992) In vitro syn-thesis of protochlorophyllide: effects of magnesium and other cations on the reconstituted (oxidative) cyclase. Plant Physiol Biochem 30: 279-284Google Scholar
  174. Wiktorsson B, Ryberg M, Gough S and Sundqvist C (1992) Isoelectric focusing of pigment-protein complexes solubilized from non-irradiated and irradiated prolamellar bodies. Physiol Plant 85: 659-669CrossRefGoogle Scholar
  175. Wiktorsson B, Engdahl S, Zhong LB, Boddi B, Ryberg M and Sundqvist C (1993) The effect of cross-linking of the sub-units of NADPH-protochlorophyllide oxidoreductase on the aggregational state of protochlorophyllide. Photosynthetica 29: 205-218Google Scholar
  176. Wiktorsson B, Ryberg M and Sundqvist C (1996a) Aggrega-tion of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favored by protein phosphorylation. Plant Phys-iol Biochem 34: 23-34Google Scholar
  177. Wiktorsson B, Ryberg M and Sundqvist C (1996b) Aggrega-tion of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favoured by protein phosphorylation. Plant Physiol Biochem 34: 23-34Google Scholar
  178. Willows R (1999) Photosynthesis-making light of a dark situa-tion. Nature 397: 27-28CrossRefGoogle Scholar
  179. Willows RD (2003) Biosynthesis of chlorophylls from protopor-phyrin IX. Nat Prod Rep 20: 327-341PubMedCrossRefGoogle Scholar
  180. Willows RD and Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273: 34206-34213PubMedCrossRefGoogle Scholar
  181. Willows RD and Hansson M (2003) Mechanism, structure and regulation of magnesium chelatase. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 13, pp 1-48. Academic Press, San DiegoGoogle Scholar
  182. Willows RD, Gibson LCD, Kanangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the mag-nesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438-443PubMedCrossRefGoogle Scholar
  183. Willows RD, Lake V, Roberts TH and Beale SI (2003) Inacti-vation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. J Bacteriol 185: 3249-3258PubMedCrossRefGoogle Scholar
  184. Willows RD, Hansson A, Birch D, Al-Karadaghi S and Hansson M (2004) EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer. J Struct Biol 146: 227-233PubMedCrossRefGoogle Scholar
  185. Younis S, Ryberg M and Sundqvist C (1995) Plastid develop-ment in germinating wheat (Triticum aestivum) is enhanced by gibberellic acid and delayed by gabaculine. Physiol Plant 95: 336-346.CrossRefGoogle Scholar
  186. Zsebo KM and Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell 37: 937-947PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Robert D. Willows
    • 1
  1. 1.Department of Chemistry and Biomolecular Sciences, Division of EnvironmentaMacquarie UniversityAustralia

Personalised recommendations