Advertisement

Light/Dark Regulation of Chloroplast Metabolism

  • Shaodong Dai
  • Kenth Hallberg
  • Hans Eklund
  • Peter Schürmann
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 23)

Light not only provides the energy for carbon assimilation in the chloroplast, it is also an important regulatory factor of carbon metabolism. The activities of several of its key enzymes are linked to light. This enables the chloroplasts to switch between biosynthetic pathways in the light and catabolic processes in the dark.

Keywords

Spinach Chloroplast Rubisco Activase Chloroplast Enzyme Chloroplast Metabolism Spinach Ferredoxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonkine ML, Jordan P, Fromme P, Krauss N, Golbeck JH and StehlikD(2003) Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327: 671–697CrossRefPubMedGoogle Scholar
  2. Åslund F and Beckwith J (1999a) Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96: 751–753Google Scholar
  3. Åslund F and Beckwith J (1999b) The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. J Bacteriol 181: 1375–1379Google Scholar
  4. Baalmann E, Backhausen JE, Rak C, Vetter S and Scheibe R (1995) Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 324: 201–208CrossRefPubMedGoogle Scholar
  5. Balmer Y, Stritt-Etter AL, Hirasawa M, Jacquot JP, Keryer E, Knaff DB and Schürmann P (2001) Oxidation-reduction and activation properties of chloroplast fructose 1,6- bisphosphatase with mutated regulatory site. Biochemistry 40: 15444–15450CrossRefPubMedGoogle Scholar
  6. Balmer Y, Koller A, del Val G, Manieri W, Schürmann P and Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100: 370–375CrossRefPubMedGoogle Scholar
  7. Balmer Y, Koller A, del Val G, Schürmann P and Buchanan BB (2004) Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Photosyn Res 79: 275–280CrossRefPubMedGoogle Scholar
  8. Baumann U and Juttner J (2002) Plant thioredoxins: the multiplicity conundrum. Cell Mol Life Sci 59: 1042–1057CrossRefPubMedGoogle Scholar
  9. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I, Nature 426: 630–635.CrossRefPubMedGoogle Scholar
  10. Brandes H, Larimer F and Hartman F (1996) The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. J Biol Chem 271: 3333–3335CrossRefPubMedGoogle Scholar
  11. BuchananBB(1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31: 341–364CrossRefGoogle Scholar
  12. BuchananBB(1991) Regulation ofCO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288: 1–9CrossRefPubMedGoogle Scholar
  13. Buchanan BB, Schürmann P, Decottignies P and Lozano RM (1994) Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch Biochem Biophys 314: 257–260CrossRefPubMedGoogle Scholar
  14. Buchanan B, Schürmann P,Wolosiuk R and Jacquot J (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73: 215–222CrossRefPubMedGoogle Scholar
  15. Capitani G, Markovic-Housley Z, delVal G, Morris M, Jansonius JN and Schürmann P (2000) Crystal structures of two functionally different thioredoxins in spinach chloroplasts. J Mol Biol 302: 135–154CrossRefPubMedGoogle Scholar
  16. Carr PD, Verger D, Ashton AR and Ollis DL (1999) Chloroplast NADP-malate dehydrogenase: structural basis of light dependent regulation of activity by thiol oxidation and reduction. Struc London 7: 461–475Google Scholar
  17. Chiadmi M, Navaza A, Miginiac-Maslow M, Jacquot JP and Cherfils J (1999) Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase. EMBO J 18: 6809–6815CrossRefPubMedGoogle Scholar
  18. Ciurli S, Carrie M, Weigel JA, Carney MJ, Stack TDP, Papaefthymiou GC and Holm RH (1990) Subsite-differentiated analogs of native iron sulfide [4Fe-4S]2+ clusters: preparation of clusters with five- and six-coordinate subsites and modulation of redox potentials and charge distributions. J Am Chem Soc 112: 2654–2664CrossRefGoogle Scholar
  19. Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB and Miginiac-Maslow M (2003) The Arabidopsis plastidal thioredoxins: new functions and new insights into specificity. J Biol Chem 278: 23747–23752CrossRefPubMedGoogle Scholar
  20. Dai S, Schwendtmayer C, Johansson K, Ramaswamy S, Schürmann P and Eklund H (2000a) How does light regulate chloroplast enzymes? Structure-function studies of the ferredoxin/ thioredoxin system. Quart Rev Biophys 33: 67–108CrossRefGoogle Scholar
  21. Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S and Eklund H (2000b) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287: 655–658CrossRefPubMedGoogle Scholar
  22. del Val G, Maurer F, Stutz E and Schürmann P (1999) Modification of the reactivity of spinach chloroplast thioredoxin f by site-directed mutagenesis. Plant Sci 149: 183–190CrossRefGoogle Scholar
  23. Droux M, Jacquot JP, Miginac-Maslow M, Gadal P, Huet JC, Crawford NA, Yee BC and Buchanan BB (1987) Ferredoxinthioredoxin reductase, an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis: purification and properties of the enzyme from C3, C4, and cyanobacterial species. Arch Biochem Biophys 252: 426–439CrossRefPubMedGoogle Scholar
  24. Dunford RP, Catley MA, Raines CA, Lloyd JC and Dyer TA (1998) Purification of active chloroplast sedoheptulose-1,7- bisphosphatase expressed in Escherichia coli. Protein Expr Purif 14: 139–145CrossRefPubMedGoogle Scholar
  25. Falini G, Fermani S, Ripamonti A, Sabatino P, Sparla F, Pupillo P and Trost P (2003) Dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD. Biochemistry 42: 4631–4639CrossRefPubMedGoogle Scholar
  26. Faske M, Holtgrefe S, Ocheretina O, Meister M, Backhausen JE and Scheibe R (1995) Redox equilibria between the regulatory thiols of light/ dark-modulated chloroplast enzymes and dithiothreitol: fine-tuning by metabolites. Biochim Biophys Acta-Protein Struct Mol Enzym 1247: 135–142CrossRefGoogle Scholar
  27. Fermani S, Ripamonti A, Sabatino P, Zanotti G, Scagliarini S, Sparla F, Trost P and Pupillo P (2001) Crystal structure of the non-regulatory A(4) isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP. J Mol Biol 314: 527–542CrossRefPubMedGoogle Scholar
  28. GeckMKand Hartman FC (2000) Kinetic and mutational analyses of the regulation of phosphoribulokinase by thioredoxins. J Biol Chem 275: 18034–18039CrossRefGoogle Scholar
  29. Glauser DA, Bourquin F, Manieri W and Schürmann P (2004) Characterization of ferredoxin:thioredoxin reductase (FTR) modified by site-directed mutagenesis. J Biol Chem 279: 16662–16669CrossRefPubMedGoogle Scholar
  30. Goyer A, Decottignies P, Issakidis-Bourguet E and Miginiac- Maslow M (2001) Sites of interaction of thioredoxin with sorghum NADP-malate dehydrogenase. FEBS Lett 505: 405– 408CrossRefPubMedGoogle Scholar
  31. Graciet E, Gans P, Wedel N, Lebreton S, Camadro JM and Gontero B (2003) The small protein CP12: a protein linker for supramolecular complex assembly. Biochemistry 42: 8163– 8170CrossRefPubMedGoogle Scholar
  32. Gromer S, Urig S and Becker K (2004) The thioredoxin system- From science to clinic. Med Res Rev 24: 40–89CrossRefPubMedGoogle Scholar
  33. Harrison DH, Runquist JA, Holub A and Miziorko HM (1998) The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase. Biochemistry 37: 5074–5085CrossRefPubMedGoogle Scholar
  34. HatchMD(1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochem Biophys Acta 895: 81–106Google Scholar
  35. Heineke D, Riens B, Grosse H, Hoferichter P, Peter U, Flügge U-I and Heldt, HW (1991) Redox transfer across the inner chloroplast envelope membrane. Plant Physiology. 95: 1131– 1137CrossRefPubMedGoogle Scholar
  36. Hirasawa M, Droux M, Gray KA, Boyer JM, Davis DJ, Buchanan BB and Knaff DB (1988) Ferredoxin-thioredoxin reductase: properties of its complex with ferredoxin. Biochim Biophys Acta 935: 1–8CrossRefGoogle Scholar
  37. Hirasawa M, Schürmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC and Knaff DB (1999) Oxidationreduction properties of chloroplast thioredoxins, ferredoxin: thioredoxin reductase, and thioredoxin f-regulated enzymes. Biochemistry 38: 5200–5205CrossRefPubMedGoogle Scholar
  38. Hirasawa M, Ruelland E, Schepens I, Issakidis-Bourguet E, Miginiac-Maslow M and Knaff DB (2000) Oxidationreduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphatemalate dehydrogenase. Biochemistry 39: 3344–3350CrossRefPubMedGoogle Scholar
  39. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54: 237– 271CrossRefPubMedGoogle Scholar
  40. Issakidis E, Miginiac-Maslow M, Decottignies P, Jacquot JP, Cretin C and Gadal P (1992) Site-directed mutagenesis reveals the involvement of an additional thioredoxin-dependent regulatory site in the activation of recombinant sorghum leaf NADP-malate dehydrogenase. J Biol Chem 267: 21577– 21583PubMedGoogle Scholar
  41. Jacquot J-P, Lancelin J-M and Meyer Y (1997) Thioredoxins: structure and function in plant cells. New Phytol 136: 543– 570CrossRefGoogle Scholar
  42. Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C and Aubry A (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol 64: 1065–1069CrossRefPubMedGoogle Scholar
  43. Jameson GN, Walters EM, Manieri W, Schürmann P, Johnson MK and Huynh BH (2003) Spectroscopic evidence for site specific chemistry at a unique iron site of the [4Fe-4S] cluster in ferredoxin:thioredoxin reductase. J Am Chem Soc 125: 1146–1147CrossRefPubMedGoogle Scholar
  44. Johansson K, Ramaswamy S, Saarinen M, Lemaire-Chamley M, Issakidis-Bourguet E, Miginiac-Maslow M and Eklund H (1999) Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form. Biochemistry 38: 4319-4326CrossRefPubMedGoogle Scholar
  45. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917CrossRefPubMedGoogle Scholar
  46. Krimm I, Goyer A, Issakidis-Bourguet E, Miginiac-Maslow M and Lancelin JM (1999) Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADPmalate dehydrogenase provides a structural basis for the relief of autoinhibition. J Biol Chem 274: 34539–34542CrossRefPubMedGoogle Scholar
  47. Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y and Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin- NADP(+) reductase. Nat Struct Biol 8: 117–121CrossRefPubMedGoogle Scholar
  48. Lebreton S and Gontero B(1999)Memory and imprinting in multienzyme complexes. Evidence for information transfer from glyceraldehyde-3-phosphate dehydrogenase to phosphoribulokinase under reduced state in Chlamydomonas reinhardtii. J Biol Chem 274: 20879–20884CrossRefPubMedGoogle Scholar
  49. Lebreton S, Graciet E and Gontero B (2003) Modulation, via protein-protein interactions, of glyceraldehyde-3-phosphate dehydrogenase activity through redox phosphoribulokinase regulation. J Biol Chem 278: 12078–12084CrossRefPubMedGoogle Scholar
  50. Lemaire SD, Collin V, Keryer E, Quesada A and Miginiac- Maslow M (2003) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543: 87–92CrossRefPubMedGoogle Scholar
  51. Meyer Y, Verdoucq L and Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4: 388–394CrossRefPubMedGoogle Scholar
  52. Meyer Y, Miginiac-Maslow M, Schürmann P and Jacquot J-P (2001) Protein-protein interactions in the plant thioredoxin dependent systems. In: McManus MT, Laing W and Allan A (eds) The Annual Plant Reviews, pp 1–29. Sheffield Academic Press, Sheffield, EnglandGoogle Scholar
  53. Meyer Y, Vignols, F and Reichheld J-P (2002) Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347: 394–402CrossRefPubMedGoogle Scholar
  54. Miginiac-Maslow M and Lancelin J-M (2002) Intrasteric inhibition in redox signalling: light activation of NADP-malate dehydrogenase. Photosynth Res 72: 1–12CrossRefPubMedGoogle Scholar
  55. Miginiac-Maslow M, Issakidis E, Lemaire M, Ruelland E, Jacquot JP and Decottignies P (1997) Light-dependent activation of NADP-malate dehydrogenase: a complex process. Aust J Plant Physiol 24: 529–542CrossRefGoogle Scholar
  56. Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gomez-Moreno C and Frey M (2000) A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep 1: 271–276CrossRefPubMedGoogle Scholar
  57. Motohashi K, Kondoh A, Stumpp MT and Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98: 11224–11229CrossRefPubMedGoogle Scholar
  58. Porter MA, Stringer CD and Hartman FC (1998) Characterization of the regulatory thioredoxin site of phosphoribulokinase. J Biol Chem 263: 123–129Google Scholar
  59. Powis G and Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30: 421–455CrossRefPubMedGoogle Scholar
  60. Qi J, Isupov M, Littlechild J and Anderson L (2001) Chloroplast glyceraldehyde-3-phosphate dehydrogenase contains a single disulfide bond located in the C-terminal extension to the B subunit. J Biol Chem 276: 35247–35252CrossRefPubMedGoogle Scholar
  61. Rodriguez-Suarez RJ, Mora-Garcia S and Wolosiuk RA (1997) Characterization of cysteine residues involved in the reductive activation and the structural stability of rapeseed (Brassica napus) chloroplast fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 232: 388–393CrossRefPubMedGoogle Scholar
  62. Ruelland E and Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci 4: 136–141CrossRefPubMedGoogle Scholar
  63. Ruelland E, Johansson K, Decottignies P, DjukicNand Miginiac- Maslow M (1998) The autoinhibition of sorghum NADP malate dehydrogenase is mediated by a C-terminal negative charge. J Biol Chem 273: 33482–33488CrossRefPubMedGoogle Scholar
  64. Salamon Z, Tollin G, Hirasawa M, Gardet-Salvi L, Stritt-Etter AL, Knaff DB and Schürmann P (1995) The oxidationreduction properties of spinach thioredoxins f and m and of ferredoxin:thioredoxin reductase. Biochim Biophys Acta 1230: 114–118CrossRefPubMedGoogle Scholar
  65. Scagliarini S, Trost P and Pupillo P (1998) The non-regulatory isoform of NADP(H)-glyceraldehyde-3-phosphate dehydrogenase from spinach chloroplasts. J Exp Bot 49: 1307–1315CrossRefGoogle Scholar
  66. Scheibe R (1994) Photoregulation of chloroplast enzymes. Naturwissenschaften 81: 443–448CrossRefPubMedGoogle Scholar
  67. Scheibe R, Kampfenkel K, Wessels R and Tripier D (1991) Primary structure and analysis of the location of the regulatory disulfide bond of pea chloroplast NADP-malate dehydrogenase. Biochim Biophys Acta 1076: 1–8PubMedGoogle Scholar
  68. Schepens I, Johansson K, Decottignies P, Gillibert M, Hirasawa M, Knaff D and Miginiac-Maslow M (2000) Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity. J Biol Chem 275: 20996–21001CrossRefPubMedGoogle Scholar
  69. Schürmann P (2003a) The ferredoxin/thioredoxin system. A light-dependent redox regulatory system in oxygenic photosynthetic cells. In: Gitler C and Danon A (eds) Cellular Implications of Redox Signalling, pp 73–98.Google Scholar
  70. World Scientific Publishing Co Ltd, Singapore Schürmann P (2003b) Redox signaling in the chloroplast - the ferredoxin/thioredoxin system. Antioxidants Redox Sig 5: 69–78CrossRefGoogle Scholar
  71. Schürmann P and Buchanan BB (2001) The structure and function of the ferredoxin/thioredoxin system. In: Andersson B and Aro EM (eds)Regulatory Aspects of Photosynthesis. Advances in Photosynthesis, Vol 11, pp. 331–361. Kluwer Academic Publishers, DordrechtGoogle Scholar
  72. Schürmann P and Gardet-Salvi L (1993) Chemical modification of the active site of ferredoxin-thioredoxin reductase. Chimia 47: 245–246Google Scholar
  73. Schürmann P and Jacquot J-P (2000) Thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51: 371–400CrossRefPubMedGoogle Scholar
  74. Schürmann P and Wolosiuk RA (1978) Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase. Biochim Biophys Acta 522: 130–138PubMedGoogle Scholar
  75. Schwarz O, Schürmann P and Strotmann H (1997) Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J Biol Chem 272: 16924–16927CrossRefPubMedGoogle Scholar
  76. Schwendtmayer C, Manieri W, Hirasawa M, Knaff DB and Schürmann P (1998) Cloning, expression and characterization of ferredoxin:thioredoxin reductase from Synechocystis sp PCC6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects (Proceedings of the Xth International Congress on Photosynthesis, Budapest, Hungary), pp 1927–1930. Kluwer Academic Publishers, DordrechtGoogle Scholar
  77. Sparla F, Pupillo P and Trost P (2002) The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. J Biol Chem 277: 44946–44952CrossRefPubMedGoogle Scholar
  78. Staples CR, Ameyibor E, FuW, Gardet-Salvi L, Stritt-Etter AL, Schürmann P, Knaff DB and JohnsonMK(1996) The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters. Biochemistry 35: 11425–11434CrossRefPubMedGoogle Scholar
  79. Staples CR, Gaymard E, Stritt-Etter AL, Telser J, Hoffman BM, Schürmann P, Knaff DB and Johnson MK (1998) Role of the [Fe4S4] cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37: 4612–4620CrossRefPubMedGoogle Scholar
  80. Villeret V, Huang S, Zhang Y, Xue Y and Lipscomb WN (1995) Crystal structure of spinach chloroplast fructose-1,6- bisphosphatase at 2.8 Å resolution. Biochemistry 34: 4299–4306CrossRefPubMedGoogle Scholar
  81. Wangensteen OS, Chueca A, Hirasawa M, Sahrawy M, Knaff DB and Lopez Gorge J (2001) Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction. Biochim Biophys Acta 1547: 156–166PubMedGoogle Scholar
  82. Wedel N and Soll J (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Natl Acad Sci USA 95: 9699–9704CrossRefPubMedGoogle Scholar
  83. Wenderoth I, Scheibe R and von Schaewen A (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J Biol Chem 272: 26985–2690CrossRefPubMedGoogle Scholar
  84. Zhang N and Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96: 9438–9443CrossRefPubMedGoogle Scholar
  85. Zimmermann G, Kelly GJ and Latzko E (1976) Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem 70: 361–367CrossRefPubMedGoogle Scholar
  86. Schwendtmayer C, Manieri W, Hirasawa M, Knaff DB and Schürmann P (1998) Cloning, expression and characterization of ferredoxin:thioredoxin reductase from Synechocystis sp PCC6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects (Proceedings of the Xth International Congress on Photosynthesis, Budapest, Hungary), pp 1927–1930. Kluwer Academic Publishers, DordrechtGoogle Scholar
  87. Sparla F, Pupillo P and Trost P (2002) The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. J Biol Chem 277: 44946–44952CrossRefPubMedGoogle Scholar
  88. Staples CR, Ameyibor E, FuW, Gardet-Salvi L, Stritt-Etter AL, Schürmann P, Knaff DB and JohnsonMK(1996) The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters. Biochemistry 35: 11425–11434CrossRefPubMedGoogle Scholar
  89. Staples CR, Gaymard E, Stritt-Etter AL, Telser J, Hoffman BM, Schürmann P, Knaff DB and Johnson MK (1998) Role of the [Fe4S4] cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37: 4612–4620CrossRefPubMedGoogle Scholar
  90. Villeret V, Huang S, Zhang Y, Xue Y and Lipscomb WN (1995) Crystal structure of spinach chloroplast fructose-1,6- bisphosphatase at 2.8 Å resolution. Biochemistry 34: 4299–4306CrossRefPubMedGoogle Scholar
  91. Wangensteen OS, Chueca A, Hirasawa M, Sahrawy M, Knaff DB and Lopez Gorge J (2001) Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction. Biochim Biophys Acta 1547: 156–166PubMedGoogle Scholar
  92. Wedel N and Soll J (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Natl Acad Sci USA 95: 9699–9704CrossRefPubMedGoogle Scholar
  93. Wenderoth I, Scheibe R and von Schaewen A (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J Biol Chem 272: 26985–2690CrossRefPubMedGoogle Scholar
  94. Zhang N and Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96: 9438–9443CrossRefPubMedGoogle Scholar
  95. Zimmermann G, Kelly GJ and Latzko E (1976) Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem 70: 361–367CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Shaodong Dai
    • 1
  • Kenth Hallberg
    • 2
  • Hans Eklund
    • 3
  • Peter Schürmann
    • 4
  1. 1.Integrated Department of ImmunologyNational Jewish Medical and Research Center & University of Colorado Health Sciences CenterDenverUSA
  2. 2.AstraZeneca R&D MülndalStructural Chemistry LaboratorySweden
  3. 3.Department of Molecular BiologySwedish University of Agricultural SciencesSweden
  4. 4.Laboratoire de Biochimie VégétaleUniversité de NeuchâtelSwitzerland

Personalised recommendations