Advertisement

ROCK SLOPE FAILURES IN NORWEGIAN FJORD AREAS: EXAMPLES, SPATIAL DISTRIBUTION AND TEMPORAL PATTERN

  • L.H. BLIKRA1
  • O. LONGVA
  • A. BRAATHEN
  • E. ANDA
  • J.F. DEHLS
  • K. STALSBERG
Part of the NATO Science Series book series (NAIV, volume 49)

Abstract

Rock avalanches and related tsunamis represent one of the most serious natural hazards in Norway, and during the last 100 years more than 170 people have lost their lives in western Norway. Large-scale rock-slope failures range from sliding of relatively intact masses of rock, to fully disintegrated rock avalanches. A wide variety of features mirror rock avalanches plunging into valleys or fjords. Bouldery fans, lobes and ridges characterize the proximal parts, while thin debris-flow deposits often occur far beyond this zone. Major deformations of valley-fill and fjord sediments are commonly related to the impact of large volumes of rock. The spatial and temporal pattern of rockavalanche events in Norway demonstrates that such events are common and occur within certain regions, and are important data for evaluating background hazard levels. The mechanisms for occurrence and triggering of rock-slope failures are still uncertain, but seismic ground shaking and creep processes are probably important although, in some areas, effects of glacial unloading during the deglaciation phase cannot be excluded. The geographic concentrations of events indicate that relatively large earthquakes may have played a role as triggering mechanisms. This hypothesis is strengthened by the identification of postglacial faults in two of the rock-failure zones.

Keywords

Rock Avalanche Permafrost Melting Seismic Stratigraphy Rock Glacier Slide Scar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anda, E. and Blikra, L.H. (1998) Rock-avalanche hazard in Møre & Romsdal, western Norway. Norwegian Geotechnical Institute Publication 203, 53–57.Google Scholar
  2. 2.
    Anda, E., Blikra, L.H. and Braathen, A. (2002) The Berill fault - first evidence of neotectonic faulting in southern Norway. Norsk Geologisk Tidsskrift 82, 175–182.Google Scholar
  3. 3.
    Ballantyne, C.K. (2002) Paraglacial geomorphology. Quaternary Science Reviews 21, 1935–2017.CrossRefGoogle Scholar
  4. 4.
    Blikra, L.H. and Anda, E. (1997) Large rock avalanches in Møre og Romsdal, western Norway. Geological Survey of Norway Bulletin 433, 44–45.Google Scholar
  5. 5.
    Blikra, L.H., Anda, E. and Longva, O. (1999) Fjellskredprosjektet i Møre og Romsdal: Status og planer. Geological Survey of Norway Report 99.120.Google Scholar
  6. 6.
    Blikra, L.H., Braathen, A., Anda, E., Stalsberg, K. and Longva, O. (2002) Rock avalanches, gravitational bedrock fractures and neotectonic faults onshore northern West Norway: Examples, regional distribution and triggering mechanisms. Geological Survey of Norway Report 2002.016.Google Scholar
  7. 7.
    Blikra, L.H., Braathen, A. and Skurtveit, E. (2001) Hazard evaluation of rock avalanches; the Baraldsneset-Oterøya area. Geological Survey of Norway Report 2001.108.Google Scholar
  8. 8.
    Blikra, L.H. and Longva, O. (1995) Frost-shattered debris facies of Younger Dryas age in the coastal sedimentary successions in western Norway: palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 118, 89–110.CrossRefGoogle Scholar
  9. 9.
    Braathen, A., Blikra, L.H., Berg, S.S. and Karlsen, F. (in press) Rock-slope failures of Norway; type, geometry, deformation mechanisms and stability. Norwegian Journal of Geology (NGT). Google Scholar
  10. 10.
    Cruden, D.M. and Hungr, O. (1986) The debris of the Frank slide and theories of rockslide-avalanche mobility. Canadian Journal of Earth Sciences 23, 425–432.CrossRefGoogle Scholar
  11. 11.
    Dehls, J.F., Olesen, O., Olsen, L. and Blikra, L.H. (2000): Neotectonic faulting in northern Norway; the Stuoragurra and Nordmannvikdalen faults. Quaternary Science Reviews 19, 1447–1460.CrossRefGoogle Scholar
  12. 12.
    Domaas, U., Rosenvold, B.S., Blikra, L.H., Johansen, H., Grimstad, E., Sørlie, J.E., Gunleiksrud, O., Engen, A. and L ægreid, O. (2002) Studie av fjellskred og dalsidestabilitet i fyllittområder (Report to the Norwegian Research Council). Norwegian Geotechnical Institute Report 20001132–32.Google Scholar
  13. 13.
    Elvebakk, H. and Blikra, L.H. (1999) Georadarundersøkelser I forbindelse med undersøkelser av fjellskred I Romsdalen, Møre og Romsdal. Geological Survey of Norway Report 99.025.Google Scholar
  14. 14.
    Erismann, T.H. and Abele, G. (2001) Dynamics of Rockslides and Rockfalls. Springer-Verlag, Berlin Heidelberg New York.Google Scholar
  15. 15.
    Evans, S.G. and DeGraff, J.V. (eds.) (2002) Catastrophic Landslides: effects, occurrences and mechanisms. Geological Society of America Reviews in Engineering Geology 15, 412p.Google Scholar
  16. 16.
    Evans, S.G., Hungr, O. and Enegren, E.G. (1994) The Avalanche Lake rock avalanche, Mackenzie Mountains, Northwest Territories, Canada: Description, dating, and dynamics. Canadian Geotechnical Journal 31, 749–768.CrossRefGoogle Scholar
  17. 17.
    Etzelmüller, B., Berthling, I. and Sollid, J.L. (1998) The distribution of permafrost in southern Norway -a GIS approach, in Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, 23-27 June. Nordicana 57, 251–258.Google Scholar
  18. 18.
    Furseth, A. (1985) Dommedagsfjellet - Tafjord 1934. Gyldendal Norsk Forlag A/S.Google Scholar
  19. 19.
    Hermanns, R. L. and Strecker, M. R. (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. Geological Society of America Bulletin 111, 934–948.CrossRefGoogle Scholar
  20. 20.
    Hewitt, K. (1999) Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research 51, 220–237.CrossRefGoogle Scholar
  21. 21.
    Keefer, D. K. (1984) Landslides caused by earthquakes. Geological Society of America Bulletin 95, 406–421.CrossRefGoogle Scholar
  22. 22.
    Lepland, A., Bøe, R., Sønstegaard, E., Haflidason, H., Hovland, C., Olsen, H. and Sandnes, R. (2002) Sedimentological descriptions and results of sediment cores from fjord and lakes in northwest Western Norway - final report. Geological Survey of Norway Report 2002.14.Google Scholar
  23. 23.
    Maharaj, R. J. (1994) The morphology, geometry and kinematics of Judgemment Cliff rock avalanche, Blue Mountains, Jamaica, West Indies. Quarterly Journal of Engineering Geology 27, 243–256.Google Scholar
  24. 24.
    Mauring, E., Blikra, L.H. and Tønnesen, J.F. (1997) Refraksjonsseismiske malinger i Tafjord, Møre og Romsdal. Geological Survey of Norway Report 97.186.Google Scholar
  25. 25.
    Mauring, E., Lauritsen, T. and Tønnesen, J.F. (1998) Georadarmålinger i forbindelse med undersøkelser av fjellskred i Tafjord, Romsdalen, Hellsesylt og Innfjorden, Møre og Romsdal. Geological Survey of Norway Report 98.047.Google Scholar
  26. 26.
    McSaveney, M.J. (1993) Rock avalanches of 2 May and 6 September 1992, Mount Fletcher, New Zealand. Landslide News 7, 2–4.Google Scholar
  27. 27.
    Nicoletti, P.G. and Sorriso-Valvo, M. (1991) Geomorphic controls of the shape and mobility of rock avalanches. Geological Society of America Bulletin 103, 1365–1375.CrossRefGoogle Scholar
  28. 28.
    Petley, D.N. (2002) Patterns of acceleration for large slope failures, in S.G. Evans and S. Martino (eds.), Massive rock slope failure: new models for hazard assessment. NATO advanced research workshop, Italy, June 2002.Google Scholar
  29. 29.
    Schuster, R. L., Nieto, A. S., O’Rourke, T. D., Crespo, E. and Plaza-Nieto, G. (1996) Mass wasting triggered by the 5 March 1987 Ecuador earthquakes. Engineering Geology 42, 1–23.CrossRefGoogle Scholar
  30. 30.
    Shreve, R.L. (1968) The Blackhawk landslide. Geological Society of America Special Paper 108.Google Scholar
  31. 31.
    Sollid, J.L. and Sørbel, L. (1992) Rock glaciers in Svalbard and Norway. Permafrost and Periglacial Processes 3, 215–220.CrossRefGoogle Scholar
  32. 32.
    Sveian, H. (in press) Quaternary geological map of Troms County. Scale 1 : 250 000. Geological Survey of Norway.Google Scholar
  33. 33.
    Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J. and Spurk, M. (1998) INTCAL98 Radiocarbon age calibration 24,000-0 cal. BP. Radiocarbon 40, 1041-1083.Google Scholar
  34. 34.
    Svendsen, J.I. and Mangerud, J. (1987) Late Weichselian and Holocene sea-level history for a cross section of western Norway. Journal of Quaternary Science 2, 113–132.CrossRefGoogle Scholar
  35. 35.
    Terzaghi, K. (1962) Stability of steep slopes on hard unweathered rock. Geotechnique 12, 251–270.CrossRefGoogle Scholar
  36. 36.
    Wieczorek, G. F. and Jäger, S. (1996) Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California. Geomorphology 15, 17–31.CrossRefGoogle Scholar
  37. 37.
    Wyrwoll, K-H. (1977) Causes of rock-slope failure in a cold area: Labrador-Ungava. Geological Society of America Reviews in Engineering Geology 3, 59–67.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • L.H. BLIKRA1
    • 1
  • O. LONGVA
    • 1
  • A. BRAATHEN
    • 1
  • E. ANDA
    • 2
  • J.F. DEHLS
    • 3
  • K. STALSBERG
    • 3
  1. 1.Geological Survey of NorwayTrondheimNorway
  2. 2.The County Council of MØreRomsdalNorway
  3. 3.Geological Survey of NorwayTrondheimNorway

Personalised recommendations