Skip to main content

Bioreactor Engineering For Recombinant Protein Production Using Plant Cell Suspension Culture

  • Chapter
  • First Online:
Plant Tissue Culture Engineering

Part of the book series: Focus on Biotechnology ((FOBI,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gomord, V. and Faye, L. (2004) Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7: 171-181.

    Article  CAS  PubMed  Google Scholar 

  2. James, E. and Lee, J.M. (2001) The production of foreign proteins from genetically modified plant cells. Adv. Biochem. Eng. Biotechnol. 72: 127-156.

    CAS  PubMed  Google Scholar 

  3. Crawford, K.M. and Zambryski, P.C. (1999) Plasmodesmata signaling: many roles, sophisticated statutes. Curr. Opin. Plant Biol. 2: 382-387.

    Article  CAS  PubMed  Google Scholar 

  4. Doran, P.M. (2000) Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11:199 204.

    Article  CAS  PubMed  Google Scholar 

  5. Shin, Y.J.; Hong, S.Y.; Kwon, T.H.; Jang, Y.S. and Yang, M.S. (2003) High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng. 82: 778-783.

    Article  CAS  PubMed  Google Scholar 

  6. Firek, S.; Draper, J.; Owen, M.R.; Gandecha, A.; Cockburn, B. and Whitelam, G.C. (1993) Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol. Biol. 23: 861-870.

    Article  CAS  PubMed  Google Scholar 

  7. Fischer, R.; Liao, Y.C. and Drossard, J. (1999) Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J. Immunol. Methods 226: 1-10.

    Article  CAS  PubMed  Google Scholar 

  8. Sharp, J.M. and Doran, P.M. (2001) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol. Bioeng. 73: 338-346.

    Article  CAS  PubMed  Google Scholar 

  9. Xu, H.; Montoya, F.U.; Wang, Z.; Lee, J.M.; Reeves, R.; Linthicum, D.S. and Magnuson, N.S. (2002) Combined use of regulatory elements within the cDNA to increase the production of a soluble mouse single-chain antibody, scFv, from tobacco cell suspension cultures. Protein Expr. Purif. 24: 384-394.

    Article  CAS  PubMed  Google Scholar 

  10. Smith, M.L.; Mason, H.S. and Shuler, M.L. (2002) Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnol. Bioeng. 80: 812-822.

    Article  CAS  PubMed  Google Scholar 

  11. Magnuson, N.S.; Linzmaier, P.M.; Reeves, R.; An, G.; HayGlass, K. and Lee, J.M. (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr. Purif. 13: 45-52.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon, T.H.; Seo, J.E.; Kim, J.; Lee, J.H.; Jang, Y.S. and Yang, M.S. (2003) Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnol. Bioeng. 81: 870 875.

    Article  CAS  PubMed  Google Scholar 

  13. James, E.A.; Wang, C.; Wang, Z.; Reeves, R.; Shin, J.H.; Magnuson, N.S. and Lee, J.M. (2000) Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells. Protein Expr. Purif. 19: 131-138.

    Article  CAS  PubMed  Google Scholar 

  14. Francisco, J.A.; Gawlak, S.L.; Miller, M.; Bathe, J.; Russell, D.; Chace, D.; Mixan, B.; Zhao, L.; Fell, H.P. and Siegall, C.B. (1997) Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug. Chem. 8: 708-713.

    Article  CAS  PubMed  Google Scholar 

  15. Terashima, M.; Murai, Y.; Kawamura, M.; Nakanishi, S.; Stoltz, T.; Chen, L.; Drohan, W.; Rodriguez, R.L. and Katoh, S. (1999) Production of functional human alpha 1-antitrypsin by plant cell culture. Appl. Microbiol. Biotechnol. 52: 516-523.

    Article  CAS  PubMed  Google Scholar 

  16. Trexler, M.M.; McDonald, K.A. and Jackman, A.P. (2002) Bioreactor production of human alpha(1)antitrypsin using metabolically regulated plant cell cultures. Biotechnol. Prog. 18: 501-508.

    Article  CAS  PubMed  Google Scholar 

  17. Fischer, R.; Emans, N.; Schuster, F.; Hellwig, S. and Drossard, J. (1999) Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol. Appl. Biochem. 30 (Pt 2): 109-112.

    CAS  PubMed  Google Scholar 

  18. Kieran, P.M. (2001) Bioreactor design for plant cell suspension cultures. In: Cabral, J.; Mota, M. and Tramper, J. (Eds.) Multiphase bioreactor design. Taylor and Francis, London; pp. 391-426.

    Google Scholar 

  19. Doran, P.M. (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol. Prog. 15: 319-335.

    Article  CAS  PubMed  Google Scholar 

  20. Wetzstein, H. and He, Y. (2000) Anatomy of plant cells. In: Spier, R (Ed.), Encyclopedia of cell technology. Wiley, New York; pp. 24-31.

    Google Scholar 

  21. Kwon, T.; Kim, Y.; Lee, J. and Yang, M. (2003) Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures. Biotechnol. Letters 25: 1571-1574.

    Article  CAS  Google Scholar 

  22. Kwon, S.; Jo, S.; Lee, O.; Choi, S.; Kwak, S. and Lee, H. (2003) Transgenic ginseng cell lines that produce high levels of a human lactoferrin. Planta Medica 69: 1005-1008.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, S.; Bugos, R.C.; Dharmasiri, N. and Su, W.W. (2001) Green fluorescent protein as a secretory reporter and a tool for process optimization in transgenic plant cell cultures. J. Biotechnol. 87: 1-16.

    Article  CAS  PubMed  Google Scholar 

  24. Su, W.; Lei, F. and Su, L. (1993) Perfusion strategy for rosmarinic acid production by Anchusa officinalis. Biotechnol. Bioeng. 42: 884-890.

    Article  CAS  PubMed  Google Scholar 

  25. Hibino, K. and Ushiyama, K. (1999) Commercial production of ginseng by plant tissue culture technology. In: Far, T.; Singh, G. and Curtis, W. (Eds.) Plant Cell and Tissue Culture for the Production of Food Ingredients. Kluwer Academic Publisher, New York; pp. 215-224.

    Chapter  Google Scholar 

  26. Chattopadhyay, S.; Farkya, S.; Srivastava, A. and Bisaria, V. (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol. Bioproc. Eng. 7: 138 149.

    Article  CAS  Google Scholar 

  27. KeEler, M.; ten Hoopen, H. and Furusaki, S. (1999) The effect of aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enz. Microbial. Technol. 24: 308 315.

    Article  Google Scholar 

  28. Su, W. (1995) Bioprocessing technology for plant cell suspension cultures. Appl. Biochem. Biotechnol. 50: 189-230.

    Article  CAS  Google Scholar 

  29. Danna, K. (2001) Production of cellulases in plants for biomass conversion. Recent Adv. in Phytochemistry 35: 205-231.

    Article  CAS  Google Scholar 

  30. Cosgrove, D.J. (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9: 1031-1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vissenberg, K.; Feijo, J.A.; Weisenseel, M.H. and Verbelen, J.P. (2001) Ion fluxes, auxin and the induction of elongation growth in Nicotiana tabacum cells. J. Exp. Bot. 52: 2161-2167.

    Article  CAS  PubMed  Google Scholar 

  32. Joubes, J.; De Schutter, K.; Verkest, A.; Inze, D. and De Veylder, L. (2004) Conditional, recombinasemediated expression of genes in plant cell cultures. Plant J. 37: 889-896.

    Article  CAS  PubMed  Google Scholar 

  33. Curtis, W. and Emery, A. (1993) Plant cell suspension culture rheology. Biotechnol. Bioeng. 42: 520 526.

    Article  CAS  PubMed  Google Scholar 

  34. Su, W. and Arias, R. (2003) Continuous perfusion plant cell culture: Bioreactor characterization and secreted enzyme production. J. Biosci. Bioeng. 95: 13-20.

    Article  CAS  PubMed  Google Scholar 

  35. Kieran, P.M.; MacLoughlin, P.F. and Malone, D.M. (1997) Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59: 39-52.

    Article  CAS  PubMed  Google Scholar 

  36. Doran, P. (1993) Design of reactors for plant cells and organs. Adv. Biochem. Eng. Biotechnol. 48:115 168.

    Google Scholar 

  37. Abdullah, M.; Ariff, A.; Marziah, M.; Ali, A. and Lajis, N. (2000) Strategies to overcome foaming and wall growth during the cultivation of Morinda elliptica cell suspension culture in a stirred-tank bioreactor. Plant Cell Tissue Org. Cult. 60: 205-212.

    Article  CAS  Google Scholar 

  38. Wongsamuth, R. and Doran, P. (1997) The filtration properties of Atropa belladonna plant cell suspensions; effect of hydrodynamic shear and elevated carbon dioxide levels on culture and filtration properties. J. Chem. Technol. Biotechnol. 11/29/2007 1:53PM69: 15-26.

    Article  CAS  Google Scholar 

  39. Howell, J.; Chi, C. and Pawlowsky, U. (1972) Effect of wall growth on scale-up problems and dynamic operating characteristics of the biological reactor. Biotechnol. Bioeng. 14: 253-265.

    Article  CAS  Google Scholar 

  40. Kawase, Y. and Moo-Young, M. (1990) The effect of antifoam agents on mass transfer in bioreactors. Bioprocess Eng. 5: 169-173.

    Article  CAS  Google Scholar 

  41. Meijer, J.; ten Hoopen, H.; Luyben, K. and Libbenga, K. (1993) Effects of hydrodynamic stress on cultured plant cells: A literature survey. Enz. Microbial Technol. 15: 234-238.

    Article  CAS  Google Scholar 

  42. Kieran, P.M.; Malone, D.M. and MacLoughlin, P.F. (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. Adv. Biochem. Eng. Biotechnol. 67: 139-177.

    CAS  PubMed  Google Scholar 

  43. Dunlop, E.; Namdev, P. and Rosenberg, M. (1994) Effect of fluid shear forces on plant cell suspensions. Chemical Eng. Sci. 49: 2263-2276.

    Article  CAS  Google Scholar 

  44. Sowana, D.; Williams, D.; Dunlop, E.; Dally, B.; O’Neill, B. and Fletcher, D. (2001) Turbulent shear stress effects on plant cell suspension cultures. Trans. Chem.E 79: 867-875.

    Article  CAS  Google Scholar 

  45. Sowana, D.; Williams, D.; O’Neill, B. and Dunlop, E. (2002) Studies of the shear protective effects of Pluronic F-68 on wild carrot cell cultures. Biochemical Eng. J. 12: 165-173.

    Article  CAS  Google Scholar 

  46. MacLoughlin, P.F.; Malone, D.M.; Murtagh, J.T. and Kieran, P.M. (1998) The effects of turbulent jet flows on plant cell suspension cultures. Biotechnol. Bioeng. 58: 595-604.

    Article  CAS  PubMed  Google Scholar 

  47. Namdev, P.K. and Dunlop, E.H. (1995) Shear sensitivity of plant cells in suspension. Appl. Biochem. Biotechnol. 54: 109-131.

    Article  CAS  Google Scholar 

  48. Han, R. and Yuan, Y. (2004) Oxidative burst in suspension culture of Taxus cuspidata induced by a laminar shear stress in short-term. Biotechnol. Progress 20: 507-513.

    Article  CAS  Google Scholar 

  49. Yahraus, T.; Chandra, S.; Legendre, L. and Low, P.S. (1995) Evidence for a mechanically induced oxidative burst. Plant Physiol. 109: 1259-1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shinmyo, A.; Shoji, T.; Bando, E.; Nagaya, S.; Nakai, Y.; Kato, K.; Sekine, M. and Yoshida, K. (1998) Metabolic engineering of cultured tobacco cells. Biotechnol. Bioeng. 58: 329-332.

    Article  CAS  PubMed  Google Scholar 

  51. Koroleva, O.A.; Tomlinson, M.; Parinyapong, P.; Sakvarelidze, L.; Leader, D.; Shaw, P. and Doonan, J.H. (2004) CycD1, a Putative G1 Cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 Cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16: 2364-2379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cockcroft, C.E.; den Boer, B.G.; Healy, J.M. and Murray, J.A. (2000) Cyclin D control of growth rate in plants. Nature 405: 575-579.

    Article  CAS  PubMed  Google Scholar 

  53. Gao, J. and Lee, J. (1992) Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biotechnol. Progress 8: 285-290.

    Article  CAS  Google Scholar 

  54. Cooney, C.; Wang, D. and Mateles, R. (1969) Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol. Bioeng. 11: 269-281.

    Article  CAS  PubMed  Google Scholar 

  55. Hashimoto, T. and Azechi, S. (1988) Bioreactors for large-scale culture of plant cells. In: Bajaj, Y.P.S. (Ed.), Biotechnology in Agriculture and Forestry. Springer, Berlin; pp. 104-122.

    Google Scholar 

  56. Farres, J. and Kallio, P.T. (2002) Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol. Progress 18: 229-233.

    Article  CAS  Google Scholar 

  57. Igamberdiev, A.U.; Seregelyes, C.; Manac’h, N. and Hill, R.D. (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219: 95-102.

    Article  CAS  PubMed  Google Scholar 

  58. Shiao, T.L.; Ellis, M.H.; Dolferus, R.; Dennis, E.S. and Doran, P.M. (2002) Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnol. Bioeng. 77: 455-461.

    Article  CAS  PubMed  Google Scholar 

  59. Suehara, K.; Takao, A.; Nakamura, K.; Uozumi, N. and Kobayashi, T. (1996) Optimal expression of GUS gene from methyl jasmonate-inducible promoter in high density culture of transformed tobacco cell line BY-2. J. Ferment. Bioeng. 82: 51-55.

    Article  CAS  Google Scholar 

  60. Yoshida, K.; Kasai, T.; Garcia, M.R.; Sawada, S.; Shoji, T.; Shimizu, S.; Yamazaki, K.; Komeda, Y. and Shinmyo, A. (1995) Heat-inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 44: 466-472.

    Article  CAS  PubMed  Google Scholar 

  61. Uozumi, N.; Inoue, Y.; Yamazaki, K. and Kobayashi, T. (1994) Light activation of expression associated with the tomato rbcS promoter in transformed tobacco cell line BY-2. J. Biotechnol. 36: 55-62.

    Article  CAS  PubMed  Google Scholar 

  62. Nara, Y.; Kurata, H.; Seki, M. and Taira, K. (2000) Glucocorticoid-induced expression of a foreign gene by the GVG system in transformed tobacco BY-2 cells. Biochemical Eng. J. 6: 185-191.

    Article  CAS  Google Scholar 

  63. Kim, K.Y.; Kwon, S.Y.; Lee, H.S.; Hur, Y.; Bang, J.W. and Kwak, S.S. (2003) A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol. Biol. 51: 831-838.

    Article  CAS  PubMed  Google Scholar 

  64. Boetti, H.; Chevalier, L.; Denmat, L.A.; Thomas, D. and Thomasset, B. (1999) Efficiency of physical (light) or chemical (ABA, tetracycline, CuSO4 or 2-CBSU)-stimulus-dependent gus gene expression in tobacco cell suspensions. Biotechnol. Bioeng. 64: 1-13.

    Article  CAS  PubMed  Google Scholar 

  65. Nagaya, S.; Nakai, Y., Kato, K; Sekine, M.; Yoshida, K. and Shinmyo, A. (2000) Isolation of growth-phase-specific promoters from cultured tobacco cells. J. Biosci. Bioeng. 89: 231-235.

    Article  CAS  PubMed  Google Scholar 

  66. Fischer, R.; Stoger, E.; Schillberg, S.; Christou, P. and Twyman, R.M. (2004) Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152-158.

    Article  CAS  PubMed  Google Scholar 

  67. Bateman, K.; Congiu, M.; Tregear, G.; Clarke, A. and Anderson, M. (1997) Bacitracin significantly reduces degradation of peptides in plant cell cultures. Biotechnol. Bioeng. 53: 226-231.

    Article  CAS  PubMed  Google Scholar 

  68. James, E.; Mills, D. and Lee, J. (2002) Increased production and recovery of secreted foreign proteins from plant cell cultures using an affinity chromatography bioreactor. Biochemical Eng. J. 12: 205-213.

    Article  CAS  Google Scholar 

  69. Goddijn, O. and Pen, J. (1995) Plants as bioreactors. TIBTECH 13: 379-387.

    Article  CAS  Google Scholar 

  70. Gallie, D. and Walbot, V. (1992) Identification of the motifs within the tobacco mosaic virus 5’-leader responsible for enhancing translation. Nucleic Acids Res. 20: 4631-4638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Day, C.; Lee, E.; Kobayashi, J.; Holappa, L.; Albert, H. and Ow, D. (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev. 14: 2869-2880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hilleren, P. and Parker, R. (1999) Mechanisms of mRNA surveillance in eukaryotes. Ann. Rev. Genet. 33: 229-260.

    Article  CAS  PubMed  Google Scholar 

  73. Spiker, S. and William, F. (1996) Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol. 110: 15-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Voinnet, O.; Pinto, Y. and Baulcombe, D. (1999) Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96: 14147-14152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verdelhan des Molles, D.; Gomord, V.; Bastin, M.; Faye, L. and Courtois, D. (1999) Expression of a carrot invertase gene in tobacco suspension cells cultivated in batch and continuous culture conditions. J. Biosci. Bioeng. 87: 302-306.

    Article  CAS  PubMed  Google Scholar 

  76. Su, W.; He, B.; Liang, H. and Sun, S. (1996) A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production. J. Biotechnol. 50: 225-233.

    Article  Google Scholar 

  77. Drapeau, D.; Blanch, H.W. and Wilke, C.R. (1987) Economic assessment of plant cell culture for the production of ajmalicine. Biotechnol. Bioeng. 30: 946-953.

    Article  CAS  PubMed  Google Scholar 

  78. Terashima, M.; Ejiri, Y.; Hashikawa, N. and Yoshida, H. (2001) Utilization of an alternative carbon source for efficient production of human alpha(1)-antitrypsin by genetically engineered rice cell culture. Biotechnol. Prog. 17: 403-406.

    Article  CAS  PubMed  Google Scholar 

  79. Su, W. (2000) Perfusion bioreactors. In: Spier, R. (Ed.), Encyclopedia of Cell Technology. Wiley, New York; pp. 230-242.

    Google Scholar 

  80. Hsiao, T.Y.; Bacani, F.T.; Carvalho, E.B. and Curtis, W.R. (1999) Development of a low capital investment reactor system: application for plant cell suspension culture. Biotechnol. Prog. 15: 114-122.

    Article  CAS  PubMed  Google Scholar 

  81. Junker, B.; Stanik, M.; Barna, C.; Salmon, P. and Buckland, B. (1998) Influence of impeller type on mass transfer in fermentation vessels. Bioproc.Eng. 19: 403-413.

    Article  CAS  Google Scholar 

  82. Nienow, A.W. and Bujalski, W. (2002) Recent studies on agitated three-phase (gas-solid-liquid) systems in the turbulent regime. Chemical Eng. Res. Design 80: 832-838.

    Article  CAS  Google Scholar 

  83. Junker, B.H.; Mann, Z. and Hunt, G. (2000) Retrofit of CD-6 (Smith) impeller in fermentation vessels. Appl. Biochem. Biotechnol. 89: 67-83.

    Article  CAS  PubMed  Google Scholar 

  84. Pinelli, D.; Bakker, A.; Myers, K.J.; Reeder, M.F.; Fasano, J. and Magelli, F. (2003) Some features of a novel gas dispersion impeller in a dual-impeller configuration. Chemical Eng. Res. Design 81: 448-454.

    Article  CAS  Google Scholar 

  85. Anon. (2002) http://www.chemineer.com/impellers.php.

    Google Scholar 

  86. Csiszar, P. (2004) http://www.postmixing.com/.

    Google Scholar 

  87. Dalton, C. (1985) Application of gas analysis to continuous culture. In: Neumann, K.; Barz, W. and Reinhard, E. (Eds.) Primary and secondary metabolism of plant cell cultures. Springer, Berlin; pp. 58-65.

    Chapter  Google Scholar 

  88. Bond, P.; Fowler, M. and Scragg, A. (1988) Growth of Catharanthus roseus cell suspensions in bioreactors: on-line analysis of oxygen and carbon dioxide levels in inlet and outlet gas streams. Biotechnol. Lett 10: 713-718.

    Article  CAS  Google Scholar 

  89. Nikolova, P.; Moo-Young, M. and Legge, R. (1991) Application of process mass spectroscopy to the detection of metabolic changes in plant tissue culture. Plant Cell Tissue Org. Cult. 25: 219-224.

    CAS  Google Scholar 

  90. Zhong, J.; Konstantinov, K. and Yoshida, T. (1994) Computer-aided on-line monitoring of physiological variables in suspended cell cultures of Perilla frutescensin a bioreactor. J. Ferment. Bioeng. 77: 445-447.

    Article  CAS  Google Scholar 

  91. Zhong, J. (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv. Biochemical Eng. Biotechnol. 72: 1-26.

    CAS  Google Scholar 

  92. Komaraiah, P.; Navratil, M.; Carlsson, M.; Jeffers, P.; Brodelius, M.; Brodelius, P.E.; Kieran, P.M. and Mandenius, C.F. (2004) Growth behaviour in plant cell cultures based on emissions detected by a multisensor array. Biotechnol. Prog. 20: 1245-1250.

    Article  CAS  PubMed  Google Scholar 

  93. Asali, E.C.; Mutlmmma, R. and Humphrey, A.E. (1992) Use of NAD(P)H-fluorescence for monitoring the response of starved cells of Catharanthus roseus in suspension to metabolic perturbations. J. Biotechnol. 23: 83-94.

    Article  CAS  Google Scholar 

  94. Choi, J.; Park, Y.; shin, C.; Kim, D. and Lee, W. (1995) Analysis of culture fluorescence by a fiber-optic sensor in Nicotiana tabacum plant cell culture. Korean J. Chemical Eng. 12: 528-534.

    Article  CAS  Google Scholar 

  95. Su, W.W.; Guan, P. and Bugos, R.C. (2004) High-level secretion of functional green fluorescent protein from transgenic tobacco cell cultures: characterization and sensing. Biotechnol. Bioeng. 85: 610-619.

    Article  CAS  PubMed  Google Scholar 

  96. Miyawaki, A.; Liopis, J.; Heim, R.; McCaffery, J.M.; Adams, J.A.; Ikura, M. and Tsien, R.Y. (1997) Fluorescent indicators for Ca2 + based on green fluorescent proteins and calmodulin. Nature 388: 882-887.

    Article  CAS  PubMed  Google Scholar 

  97. Fehr, M.; Frommer, W.B. and Lalonde, S. (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc. Natl. Acad. Sci. USA 99: 9846-9851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Su, W.; Liu, B.; Lu, W.; Xu, N.; Du, G. and Tan, J. (2004) Observer-based online compensation of inner filter effect in monitoring fluorescence of GFP-expressing plant cell cultures. (under publication).

    Google Scholar 

  99. Albiol, J.; Robuste, J.; Casas, C. and Poch, M. (1993) Biomass estimation in plant cell cultures using extended Kalman filter. Biotechnol. Progress 9: 174-178.

    Article  CAS  Google Scholar 

  100. Albiol, J.; Campmajo, C.; Casas, C. and Poch, M. (1995) Biomass estimation in plant cell cultures: a neural network approach. Biotechnol. Progress 11: 88-92.

    Article  CAS  Google Scholar 

  101. Zhang, J. and Su, W. (2002) Estimation of intracellular phosphate content in plant cell cultures using an extended Kalman filter. J. Biosci. Bioeng. 94: 8-14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

SU, W.W. (2008). Bioreactor Engineering For Recombinant Protein Production Using Plant Cell Suspension Culture. In: Gupta, S.D., Ibaraki, Y. (eds) Plant Tissue Culture Engineering. Focus on Biotechnology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3694-1_8

Download citation

Publish with us

Policies and ethics