Biology of Breast Cancer

Molecular and Pathologic Features of Ductal Neoplasia of the Breast: Racial Considerations
  • David F. Chhieng
  • Andra R. Frost
  • Lynya I. Talley
  • William E. Grizzle

Abstract

Breast carcinogenesis is a multi-step process that initially is recognized histopathologically as a series of preinvasive stages (intermediate stages) leading to invasive carcinoma, and ultimately to metastatic adenocarcinoma. Histologically the preinvasive stages of breast neoplasia consist of a sequence of epithelial changes which include hyperplasia, atypical hyperplasia, and carcinoma in-situ (1, 2). All aspects of breast carcinogenesis are better characterized in ductal adenocarcinomas (the majority of breast cancers) than in lobular adenocarcinomas of the breast, which tend to have different molecular characteristics than ductal neoplasia. The subsequent discussion focuses only on ductal neoplasia of the breast.

Keywords

Lymphoma Estrogen Adenocarcinoma Tamoxifen Androgen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Radford, D.M., Phillips, N.J., Fair, K.L., Ritter, J.H., Holt, M., and Donis-Keller, H. (1995). Allelic loss and the progression of breast cancer.(erratum appears in Cancer Res 1996 Feb 15;56(4):935). Cancer Research. 55, 5180–5183.PubMedGoogle Scholar
  2. (2).
    Brenner, A.J., and Aldaz, C.M. (1997). The genetics of sporadic breast cancer. In Etology of breast and gynecological cancers, C.M. Aldaz, M.N. Gould, J. Mclauchlan and J. Slaga, eds. (New York, NY: Wiley-Liss), pp. 63–82.Google Scholar
  3. (3).
    Jensen, R.A., Dupont, W.D., and Page, D.L. (1993). Diagnostic criteria and cancer risk of proliferative breast lesions. Journal of Cellular Biochemistry — Supplement. 17G, 59–64.PubMedGoogle Scholar
  4. (4).
    Marshall, L.M., Hunter, D.J., Connolly, J.L., Schnitt, S.J., Byrne, C., London, S.J., and Colditz, G.A. (1997). Risk of breast cancer associated with atypical hyperplasia of lobular and ductal types. Cancer Epidemiology, Biomarkers & Prevention. 6, 297–301.Google Scholar
  5. (5).
    Couch, F.J., and Weber, B.L. (1998). Breast cancer. In The genetic basis of human cancer, B. Vogelstein and K.W. Kinzler, eds. (New York, NY: McGraw Hill), pp. 537–563.Google Scholar
  6. (6).
    Devilee, P., and Cornelisse, C.J. (1994). Somatic genetic changes in human breast cancer. Biochimica et Biophysica Acta. 1198, 113–130.PubMedGoogle Scholar
  7. (7).
    Kuukasjarvi, T., Karhu, R., Tanner, M., Kahkonen, M., Schaffer, A., Nupponen, N., Pennanen, S., Kallioniemi, A., Kallioniemi, O.P., and Isola, J. (1997). Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Research. 57, 1597–1604.PubMedGoogle Scholar
  8. (8).
    Kuukasjarvi, T., Tanner, M., Pennanen, S., Karhu, R., Kallioniemi, O.P., and Isola, J. (1997). Genetic changes in intraductal breast cancer detected by comparative genomic hybridization. American Journal of Pathology. 150, 1465–1471.PubMedGoogle Scholar
  9. (9).
    Nishizaki, T., DeVries, S., Chew, K., Goodson, W.H., 3rd, Ljung, B.M., Thor, A., and Waldman, F.M. (1997). Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization. Genes, Chromosomes & Cancer. 19, 267–272.CrossRefGoogle Scholar
  10. (10).
    Tsuda, H., Fukutomi, T., and Hirohashi, S. (1995). Pattern of gene alterations in intraductal breast neoplasms associated with histological type and grade. Clinical Cancer Research. 1, 261–267.PubMedGoogle Scholar
  11. (11).
    Weinstat-Saslow, D., Merino, M.J., Manrow, R.E., Lawrence, J.A., Bluth, R.F., Wittenbel, K.D., Simpson, J.F., Page, D.L., and Steeg, P.S. (1995). Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions.(comment). Nature Medicine. 1, 1257–1260.PubMedCrossRefGoogle Scholar
  12. (12).
    Beckmann, M.W., Niederacher, D., Schnurch, H.G., Gusterson, B.A., and Bender, H.G. (1997). Multistep carcinogenesis of breast cancer and tumour heterogeneity. Journal of Molecular Medicine. 75, 429–439.PubMedCrossRefGoogle Scholar
  13. (13).
    Davidoff, A.M., Kerns, B.J., Iglehart, J.D., and Marks, J.R. (1991). Maintenance of p53 alterations throughout breast cancer progression. Cancer Research. 51, 2605–2610.PubMedGoogle Scholar
  14. (14).
    Zhang, G.J., Kimijima, I., Abe, R., Kanno, M., Katagata, N., Hara, K., Watanabe, T., and Tsuchiya, A. (1997). Correlation between the expression of apoptosis-related bcl-2 and p53 oncoproteins and the carcinogenesis and progression of breast carcinomas. Clinical Cancer Research. 3, 2329–2335.PubMedGoogle Scholar
  15. (15).
    Orr, J. (1958). The mechanisms of chemical carcinogenesis. Br Med Bull 14, 99–101.PubMedGoogle Scholar
  16. (16).
    Orr, J., and Spencer, A. (1972). Transplantation studies of the role of the stroma in epidermal carcinogenesis. In Tissue interactions in carcinogenesis, T. D, ed. (London: Academic Press), pp. 291–304.Google Scholar
  17. (17).
    Brues, A., and CJ, D. (1955). Radiation as a carcinogenic agent. Radiat Res 3, 272–281.PubMedCrossRefGoogle Scholar
  18. (18).
    Dawe, C., Morgan, W., and Slatic, M. (1996). Influence of epithelio-mesenchymal interactions of tumor induction by polyoma virus. Int J Cancer 1, 419–450.CrossRefGoogle Scholar
  19. (19).
    Sieweke, M.H., and Bissell, M.J. (1994). The tumor-promoting effect of wounding: a possible role for TGF-beta-induced stromal alterations. Crit Rev Oncog 5, 297–311.PubMedGoogle Scholar
  20. (20).
    Walker, R.A. (2001). The complexities of breast cancer desmoplasia. Breast Cancer Res 3, 143–145.PubMedCrossRefGoogle Scholar
  21. (21).
    Weidner, N. (1998). Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. Journal of Pathology 184, 119–122.PubMedCrossRefGoogle Scholar
  22. (22).
    Weidner, N., Semple, J.P., Welch, W.R., and Folkman, J. (1991). Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. New England Journal of Medicine 324, 1–8.PubMedGoogle Scholar
  23. (23).
    Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E.N., Moore, D.H., Meli, S., and Gasparini, G. (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute 84, 1875–1887.PubMedCrossRefGoogle Scholar
  24. (24).
    Elmore, J.G., Moceri, V.M., Carter, D., and Larson, E.B. (1998). Breast carcinoma tumor characteristics in black and white women. Cancer 83, 2509–2515.PubMedCrossRefGoogle Scholar
  25. (25).
    Newman, L.A., and Alfonso, A.E. (1997). Age-related differences in breast cancer stage at diagnosis between black and white patients in an urban community hospital. Ann Surg Oncol 4, 655–662.PubMedCrossRefGoogle Scholar
  26. (26).
    Kovi, J., Mohla, S., Norris, H.J., Sampson, C.C., and Heshmat, M.Y. (1989). Breast lesions in black women. Pathol Annu 24 Pt 1, 199–218.PubMedGoogle Scholar
  27. (27).
    Perkins, P., Cooksley, C.D., and Cox, J.D. (1996). Breast cancer. Is ethnicity an independent prognostic factor for survival? Cancer 78, 1241–1247.PubMedCrossRefGoogle Scholar
  28. (28).
    Trock, B.J. (1996). Breast cancer in African American women: epidemiology and tumor biology. Breast Cancer Res Treat 40, 11–24.PubMedCrossRefGoogle Scholar
  29. (29).
    Elledge, R.M., Clark, G.M., Chamness, G.C., and Osborne, C.K. (1994). Tumor biologic factors and breast cancer prognosis among white, Hispanic, and black women in the United States. J Natl Cancer Inst 86, 705–712.PubMedCrossRefGoogle Scholar
  30. (30).
    Simon, M.S., and Severson, R.K. (1997). Racial differences in breast cancer survival: the interaction of socioeconomic status and tumor biology. Am J Obstet Gynecol 176, S233–239.CrossRefGoogle Scholar
  31. (31).
    Weiss, S.E., Tartter, P.I., Ahmed, S., Brower, S.T., Brusco, C., Bossolt, K., Amberson, J.B., and Bratton, J. (1995). Ethnic differences in risk and prognostic factors for breast cancer. Cancer 76, 268–274.PubMedCrossRefGoogle Scholar
  32. (32).
    Wojcik, B.E., Spinks, M.K., and Optenberg, S.A. (1998). Breast carcinoma survival analysis for African American and white women in an equal-access health care system. Cancer 82, 1310–1318.PubMedCrossRefGoogle Scholar
  33. (33).
    Shavers, V.L., Harlan, L.C., and Stevens, J.L. (2003). Racial/ethnic variation in clinical presentation, treatment, and survival among breast cancer patients under age 35. Cancer 97, 134–147.PubMedCrossRefGoogle Scholar
  34. (34).
    Aziz, H., Hussain, F., Sohn, C., Mediavillo, R., Saitta, A., Hussain, A., Brandys, M., Homel, P., and Rotman, M. (1999). Early onset of breast carcinoma in African American women with poor prognostic factors. Am J Clin Oncol 22, 436–440.PubMedCrossRefGoogle Scholar
  35. (35).
    Ownby, H.E., Frederick, J., Russo, J., Brooks, S.C., Swanson, G.M., Heppner, G.H., and Brennan, M.J. (1985). Racial differences in breast cancer patients. J Natl Cancer Inst 75, 55–60.PubMedGoogle Scholar
  36. (36).
    Hunter, C.P., Redmond, C.K., Chen, V.W., Austin, D.F., Greenberg, R.S., Correa, P., Muss, H.B., Forman, M.R., Wesley, M.N., Blacklow, R.S., and et al. (1993). Breast cancer: factors associated with stage at diagnosis in black and white women. Black/White Cancer Survival Study Group. J Natl Cancer Inst 85, 1129–1137.PubMedCrossRefGoogle Scholar
  37. (37).
    Eley, J.W., Hill, H.A., Chen, V.W., Austin, D.F., Wesley, M.N., Muss, H.B., Greenberg, R.S., Coates, R.J., Correa, P., Redmond, C.K., and et al. (1994). Racial differences in survival from breast cancer. Results of the National Cancer Institute Black/White Cancer Survival Study. Jama 272, 947–954.PubMedCrossRefGoogle Scholar
  38. (38).
    Chen, V.W., Correa, P., Kurman, R.J., Wu, X.C., Eley, J.W., Austin, D., Muss, H., Hunter, C.P., Redmond, C., Sobhan, M., and et al. (1994). Histological characteristics of breast carcinoma in blacks and whites. Cancer Epidemiol Biomarkers Prev 3, 127–135.PubMedGoogle Scholar
  39. (39).
    Mohla, S., Sampson, C.C., Khan, T., Enterline, J.P., Leffall, L., Jr., and White, J.E. (1982). Estrogen and progesterone receptors in breast cancer in Black Americans: Correlation of receptor data with tumor differentiation. Cancer 50, 552–559.PubMedCrossRefGoogle Scholar
  40. (40).
    Albain, K., Green, S., LeBlanc, M., Rivkin, S., O’Sullivan, J., and Osborne, C. (1992). Proportional hazards and recurrence partitioning and amalgamation analyses of the Southwest Oncology Group node-positive adjuvant CMFVP breast cancer database: a pilot study. Breast Cancer Res Treat 22, 273–284.PubMedCrossRefGoogle Scholar
  41. (41).
    Elledge, R.M., McGuire, W.L., and Osborne, C.K. (1992). Prognostic factors in breast cancer. Seminars in Oncology 19, 244–253.PubMedGoogle Scholar
  42. (42).
    Albain, K.S., Allred, D.C, and Clark, G.M. (1994). Breast cancer outcome and predictors of outcome: are there age differentials? Journal of the National Cancer Institute. Monographs, 35–42.Google Scholar
  43. (43).
    Furberg, H., Millikan, R., Dressier, L., Newman, B., and Geradts, J. (2001). Tumor characteristics in African American and white women. Breast Cancer Res Treat 68, 33–43.PubMedCrossRefGoogle Scholar
  44. (44).
    Kimmick, G., Muss, H.B., Case, L.D., and Stanley, V. (1991). A comparison of treatment outcomes for black patients and white patients with metastatic breast cancer. The Piedmont Oncology Association experience. Cancer 67, 2850–2854.PubMedCrossRefGoogle Scholar
  45. (45).
    Pierce, L., Fowble, B., Solin, L.J., Schultz, D.J., Rosser, C., and Goodman, R.L. (1992). Conservative surgery and radiation therapy in black women with early stage breast cancer. Patterns of failure and analysis of outcome. Cancer 69, 2831–2841.PubMedCrossRefGoogle Scholar
  46. (46).
    Miller, B.A., Hankey, B.F., and Thomas, T.L. (2002). Impact of sociodemographic factors, hormone receptor status, and tumor grade on ethnic differences in tumor stage and size for breast cancer in US women. Am J Epidemiol 155, 534–545.PubMedCrossRefGoogle Scholar
  47. (47).
    Dickson, R.B., and Lippman, M.E. (2001). Cancer of the Breast. In Cancer Principles & Practice of Oncology, Volume 2, 6th Edition, V.T. DeVita, S. Hellman and S. Rosenberg, eds. (Philadelphia: Lippincott Williams & Wilkins), pp. 1633-1651.Google Scholar
  48. (48).
    Dickson, R.B., and Lippman, M.E. (2001). Molecular Basis of Breast Cancer in The Molecular Basis of Cancer, 2nd Edition (Philadelphia: W.B. Saunders Company).Google Scholar
  49. (49).
    Olopade, O.I., Fackenthal, J.D., Dunston, G., Tainsky, M.A., Collins, F., and Whitfield-Broome, C. (2003). Breast cancer genetics in African Americans. Cancer 97, 236–245.PubMedCrossRefGoogle Scholar
  50. (50).
    Clark, G.M., Dressier, L.G., Owens, M.A., Pounds, G., Oldaker, T., and McGuire, W.L. (1989). Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry. N Engl J Med 320, 627–633.PubMedCrossRefGoogle Scholar
  51. (51).
    Toikkanen, S., Joensuu, H., and Klemi, P. (1989). The prognostic significance of nuclear DNA content in invasive breast cancer-a study with long-term follow-up. Br J Cancer 60, 693–700.PubMedGoogle Scholar
  52. (52).
    Beerman, H., Kluin, P.M., Hermans, J., van de Velde, C.J., and Cornelisse, C.J. (1990). Prognostic significance of DNA-ploidy in a series of 690 primary breast cancer patients. Int J Cancer 45, 34–39.PubMedCrossRefGoogle Scholar
  53. (53).
    Witzig, T.E., Ingle, J.N., Cha, S.S., Schaid, D.J., Tabery, R.L., Wold, L.E., Grant, C., Gonchoroff, N.J., and Katzmann, J.A. (1994). DNA ploidy and the percentage of cells in S-phase as prognostic factors for women with lymph node negative breast cancer. Cancer 74, 1752–1761.PubMedCrossRefGoogle Scholar
  54. (54).
    Shiao, Y.H., Chen, V.W., Lehmann, H.P., Wu, X.C., and Correa, P. (1997). Patterns of DNA ploidy and S-phase fraction associated with breast cancer survival in blacks and whites. Clin Cancer Res 3, 587–592.PubMedGoogle Scholar
  55. (55).
    Multiple Authors. (1992). Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Early Breast Cancer Trialists’ Collaborative Group. Lancet 339, 1–15.Google Scholar
  56. (56).
    Multiple Authors (1992). Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Early Breast Cancer Trialists’ Collaborative Group. Lancet 339, 71–85.Google Scholar
  57. (57).
    Horwitz, K.B., and McGuire, W.L. (1978). Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J Biol Chem 253, 2223–2228.PubMedGoogle Scholar
  58. (58).
    Fisher, B., Redmond, C., Fisher, E.R., and Caplan, R. (1988). Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol 6, 1076–1087.PubMedGoogle Scholar
  59. (59).
    Clark, G.M., Sledge, G.W., Jr., Osborne, C.K., and McGuire, W.L. (1987). Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol 5, 55–61.PubMedGoogle Scholar
  60. (60).
    Pertschuk, L.P., and Axiotis, C.A. (1999). Steroid Hormone Receptor Immunohistochemistry in Breast Cancer: Past, Present, and Future. Breast J 5, 3–12.PubMedCrossRefGoogle Scholar
  61. (61).
    Alexieva-Figusch, J., Van Putten, W.L., Blankenstein, M.A., Blonk-Van Der Wijst, J., and Klijn, J.G. (1988). The prognostic value and relationships of patient characteristics, estrogen and progestin receptors, and site of relapse in primary breast cancer. Cancer 61, 758–768.PubMedCrossRefGoogle Scholar
  62. (62).
    Foekens, J.A., Portengen, H., van Putten, W.L., Peters, H.A., Krijnen, H.L., Alexieva-Figusch, J., and Klijn, J.G. (1989). Prognostic value of estrogen and progesterone receptors measured by enzyme immunoassays in human breast tumor cytosols. Cancer Res 49, 5823–5828.PubMedGoogle Scholar
  63. (63).
    Aamdal, S., Bormer, O., Jorgensen, O., Host, H., Eliassen, G., Kaalhus, O., and Pihl, A. (1984). Estrogen receptors and long-term prognosis in breast cancer. Cancer 53, 2525–2529.PubMedCrossRefGoogle Scholar
  64. (64).
    Hahnel, R., Woodings, T., and Vivian, A.B. (1979). Prognostic value of estrogen receptors in primary breast cancer. Cancer 44, 671–675.PubMedCrossRefGoogle Scholar
  65. (65).
    Hilsenbeck, S.G., Ravdin, P.M., de Moor, C.A., Chamness, G.C., Osborne, C.K., and Clark, G.M. (1998). Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat 52, 227–237.PubMedCrossRefGoogle Scholar
  66. (66).
    Meyer, J.S., Friedman, E., McCrate, M.M., and Bauer, W.C. (1983). Prediction of early course of breast carcinoma by thymidine labeling. Cancer 51, 1879–1886.PubMedCrossRefGoogle Scholar
  67. (67).
    Meyer, J.S., Prey, M.U., Babcock, D.S., and McDivitt, R.W. (1986). Breast carcinoma cell kinetics, morphology, stage, and host characteristics. A thymidine labeling study. Lab Invest 54, 41–51.PubMedGoogle Scholar
  68. (68).
    Meyer, J.S., and Province, M.A. (1994). S-phase fraction and nuclear size in long term prognosis of patients with breast cancer. Cancer 74, 2287–2299.PubMedCrossRefGoogle Scholar
  69. (69).
    Gaffhey, E.V., 2nd, Venz-Williamson, T.L., Hutchinson, G., Biggs, P.J., and Nelson, K.M. (1996). Relationship of standardized mitotic indices to other prognostic factors in breast cancer. Arch Pathol Lab Med 120, 473–477.Google Scholar
  70. (70).
    Helin, M.L., Helle, M.J., Helin, H.J., and Isola, J.J. (1989). Proliferative activity and steroid receptors determined by immunohistochemistry in adjacent frozen sections of 102 breast carcinomas. Arch Pathol Lab Med 113, 854–857.PubMedGoogle Scholar
  71. (71).
    Osborne, C.K. (1998). Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 51, 227–238.PubMedCrossRefGoogle Scholar
  72. (72).
    Schiff, R., and Suqua, S. (2002). The importance of estrogen receptor in breast cancer. In Breast Cancer: prognosis, treatment and prevention, J.R. Pasqualini, ed. (New York: Marcel Dekker, Inc.), pp. 149–173.Google Scholar
  73. (73).
    Ravdin, P.M., Green, S., Dorr, T.M., McGuire, W.L., Fabian, C., Pugh, R.P., Carter, R.D., Rivkin, S.E., Borst, J.R., Belt, R.J., and et al. (1992). Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol 10, 1284–1291.PubMedGoogle Scholar
  74. (74).
    Rose, D.P., and Royak-Schaler, R. (2001). Tumor biology and prognosis in black breast cancer patients: a review. Cancer Detect Prev 25, 16–31.PubMedGoogle Scholar
  75. (75).
    Natarajan, N., Nemoto, T., Mettlin, C., and Murphy, G.P. (1985). Race-related differences in breast cancer patients. Results of the 1982 national survey of breast cancer by the American College of Surgeons. Cancer 56, 1704–1709.PubMedCrossRefGoogle Scholar
  76. (76).
    Nemoto, T., Vana, J., Natarajan, N., Bedwani, R., and Mettlin, C. (1981). Observations on short-term and long-term surveys of breast cancer by the American College of Surgeons. I. Significance of the number of axillary nodes and II. Estrogen receptor assay in the U.S. in 1977. Int Adv Surg Oncol 4, 209–239.PubMedGoogle Scholar
  77. (77).
    Stanford, J.L., Szklo, M., Boring, C.C., Brinton, L.A., Diamond, E.A., Greenberg, R.S., and Hoover, R.N. (1987). A case-control study of breast cancer stratified by estrogen receptor status. Am J Epidemiol 125, 184–194.PubMedGoogle Scholar
  78. (78).
    Gapstur, S.M., Dupuis, J., Gann, P., Collila, S., and Winchester, D.P. (1996). Hormone receptor status of breast tumors in black, Hispanic, and non-Hispanic white women. An analysis of 13, 239 cases. Cancer 77, 1465–1471.PubMedCrossRefGoogle Scholar
  79. (79).
    Joslyn, S.A., and West, M.M. (2000). Racial differences in breast carcinoma survival. Cancer 88, 114–123.PubMedCrossRefGoogle Scholar
  80. (80).
    Joslyn, S.A. (2002). Hormone receptors in breast cancer: racial differences in distribution and survival. Breast Cancer Res Treat 73, 45–59.PubMedCrossRefGoogle Scholar
  81. (81).
    Chu, K.C., and Anderson, W.F. (2002). Rates for breast cancer characteristics by estrogen and progesterone receptor status in the major racial/ethnic groups. Breast Cancer Res Treat 74, 199–211.PubMedCrossRefGoogle Scholar
  82. (82).
    Li, C.I., Malone, K.E., and Daling, J.R. (2002). Differences in breast cancer hormone receptor status and histology by race and ethnicity among women 50 years of age and older. Cancer Epidemiol Biomarkers Prev 11, 601–607.PubMedGoogle Scholar
  83. (83).
    Li, C.I., Malone, K.E., and Daling, J.R. (2003). Differences in breast cancer stage, treatment, and survival by race and ethnicity. Arch Intern Med 163, 49–56.PubMedCrossRefGoogle Scholar
  84. (84).
    Ansell, D., Whitman, S., Lipton, R., and Cooper, R. (1993). Race, income, and survival from breast cancer at two public hospitals. Cancer 72, 2974–2978.PubMedCrossRefGoogle Scholar
  85. (85).
    Krieger, N., van den Eeden, S.K., Zava, D., and Okamoto, A. (1997). Race/ethnicity, social class, and prevalence of breast cancer prognostic biomarkers: a study of white, black, and Asian women in the San Francisco bay area. Ethn Dis 7, 137–149.PubMedGoogle Scholar
  86. (86).
    Silvestrini, R., Daidone, M.G., Luisi, A., Boracchi, P., Mezzetti, M., Di Fronzo, G., Andreola, S., Salvadori, B., and Veronesi, U. (1995). Biologic and clinicopathologic factors as indicators of specific relapse types in node-negative breast cancer. J Clin Oncol 13, 697–704.PubMedGoogle Scholar
  87. (87).
    Muss, H.B. (1992). Endocrine therapy for advanced breast cancer: a review. Breast Cancer Res Treat 21, 15–26.PubMedCrossRefGoogle Scholar
  88. (88).
    Silvestrini, R., and Daidone, M.G. (1993). Review of proliferative variables and their predictive value. Recent Results Cancer Res 127, 71–76.PubMedGoogle Scholar
  89. (89).
    Wenger, C.R., Beardslee, S., Owens, M.A., Pounds, G., Oldaker, T., Vendely, P., Pandian, M.R., Harrington, D., Clark, G.M., and McGuire, W.L. (1993). DNA ploidy, S-phase, and steroid receptors in more than 127, 000 breast cancer patients. Breast Cancer Res Treat 28, 9–20.PubMedCrossRefGoogle Scholar
  90. (90).
    Lyman, G.H., Lyman, S., Balducci, L., Kuderer, N., Reintgen, D., Cox, C, Baekey, P., Greenberg, H., and Horton, J. (1996). Age and the Risk of Breast Cancer Recurrence. Cancer Control 3, 421–427.PubMedGoogle Scholar
  91. (91).
    Remvikos, Y., Gerbault-Seureau, M., Magdelenat, H., Prieur, M., and Dutrillaux, B. (1992). Proliferative activity of breast cancers increases in the course of genetic evolution as defined by cytogenetic analysis. Breast Cancer Res Treat 23, 43–49.PubMedCrossRefGoogle Scholar
  92. (92).
    Veronesi, U., Marubini, E., Del Vecchio, M., Manzari, A., Andreola, S., Greco, M., Luini, A., Merson, M., Saccozzi, R., Rilke, F., and et al. (1995). Local recurrences and distant metastases after conservative breast cancer treatments: partly independent events. J Natl Cancer Inst 87, 19–27.PubMedCrossRefGoogle Scholar
  93. (93).
    Tynninen, O., von Boguslawski, K., Aronen, H.J., and Paavonen, T. (1999). Prognostic value of vascular density and cell proliferation in breast cancer patients. Pathol Res Pract 195, 31–37.PubMedGoogle Scholar
  94. (94).
    Stillman, B. (1996). Cell cycle control of DNA replication. Science 274, 1659–1664.PubMedCrossRefGoogle Scholar
  95. (95).
    Catzavelos, C, Bhattacharya, N., Ung, Y.C., Wilson, J.A., Roncari, L., Sandhu, C, Shaw, P., Yeger, H., Morava-Protzner, I., Kapusta, L., Franssen, E., Pritchard, K.I., and Slingerland, J.M. (1997). Decreased levels of the cell-cycle inhibitor p27Kipl protein: prognostic implications in primary breast cancer. Nat Med 3, 227–230.PubMedCrossRefGoogle Scholar
  96. (96).
    Chu, J.S., Huang, C.S., and Chang, K.J. (1999). p27 expression as a prognostic factor of breast cancer in Taiwan. Cancer Lett 141, 123–130.PubMedCrossRefGoogle Scholar
  97. (97).
    Porter, P.L., Malone, K.E., Heagerty, P.J., Alexander, G.M., Gatti, L.A., Firpo, E.J., Daling, J.R., and Roberts, J.M. (1997). Expression of cell-cycle regulators p27Kipl and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3, 222–225.PubMedCrossRefGoogle Scholar
  98. (98).
    Tan, P., Cady, B., Wanner, M., Worland, P., Cukor, B., Magi-Galluzzi, C, Lavin, P., Draetta, G., Pagano, M., and Loda, M. (1997). The cell cycle inhibitor p27 is an independent prognostic marker in small (Tla, b) invasive breast carcinomas. Cancer Res 57, 1259–1263.PubMedGoogle Scholar
  99. (99).
    Joe, A.K., Arber, N., Bose, S., Heitjan, D., Zhang, Y., Weinstein, I.B., and Hibshoosh, H. (2001). Cyclin Dl overexpression is more prevalent in non-Caucasian breast cancer. Anticancer Research. 21, 3535–3539.PubMedGoogle Scholar
  100. (100).
    Talley, L.I., Grizzle, W.E., Waterbor, J.W., Brown, D., Weiss, H., and Frost, A.R. (2002). Hormone receptors and proliferation in breast carcinomas of equivalent histologic grades in pre-and postmenopausal women. Int J Cancer 98, 118–127.PubMedCrossRefGoogle Scholar
  101. (101).
    Bartkova, J., Lukas, J., Strauss, M., and Bartek, J. (1994). Cell cycle-related variation and tissue-restricted expression of human cyclin Dl protein. Journal of Pathology. 172, 237–245.PubMedCrossRefGoogle Scholar
  102. (102).
    Bates, S., and Peters, G. (1995). Cyclin Dl as a cellular proto-oncogene. Seminars in Cancer Biology. 6, 73–82.PubMedCrossRefGoogle Scholar
  103. (103).
    Lukas, J., Bartkova, J., Rohde, M., Strauss, M., and Bartek, J. (1995). Cyclin Dl is dispensable for Gl control in retinoblastoma gene-deficient cells independently of cdk4 activity. Molecular & Cellular Biology. 15, 2600–2611.Google Scholar
  104. (104).
    Fantl, V., Smith, R., Brookes, S., Dickson, C, and Peters, G. (1993). Chromosome 1 lql3 abnormalities in human breast cancer.(comment). Cancer Surveys. 18, 77–94.PubMedGoogle Scholar
  105. (105).
    Gillett, C, Fantl, V., Smith, R., Fisher, C, Bartek, J., Dickson, C, Barnes, D., and Peters, G. (1994). Amplification and overexpression of cyclin Dl in breast cancer detected by immunohistochemical staining. Cancer Research. 54, 1812–1817.Google Scholar
  106. (106).
    Seshadri, R., Lee, C.S., Hui, R., McCaul, K., Horsfall, D.J., and Sutherland, R.L. (1996). Cyclin Dl amplification is not associated with reduced overall survival in primary breast cancer but may predict early relapse in patients with features of good prognosis. Clinical Cancer Research. 2, 1177–1184.PubMedGoogle Scholar
  107. (107).
    Pelosio, P., Barbareschi, M., Bonoldi, E., Marchetti, A., Verderio, P., Caffo, O., Bevilacqua, P., Boracchi, P., Buttitta, F., Barbazza, R., Dalla Palma, P., and Gasparini, G. (1996). Clinical significance of cyclin Dl expression in patients with node-positive breast carcinoma treated with adjuvant therapy. Annals of Oncology. 7, 695–703.PubMedGoogle Scholar
  108. (108).
    van Diest, P.J., Michalides, R.J., Jannink, L., van der Valk, P., Peterse, H.L., de Jong, J.S., Meijer, C.J., and Baak, J.P. (1997). Cyclin Dl expression in invasive breast cancer. Correlations and prognostic value. American Journal of Pathology. 150, 705–711.PubMedGoogle Scholar
  109. (109).
    Barnes, D.M. (1997). Cyclin Dl in mammary carcinoma. Journal of Pathology. 181, 267–269.PubMedCrossRefGoogle Scholar
  110. (110).
    Toi, M., Kashitani, J., and Tominaga, T. (1993). Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. International Journal of Cancer 55, 371–374.CrossRefGoogle Scholar
  111. (111).
    Barbareschi, M., Pelosio, P., Caffo, O., Buttitta, F., Pellegrini, S., Barbazza, R., Dalla Palma, P., Bevilacqua, G., and Marchetti, A. (1997). Cyclin-Dl-gene amplification and expression in breast carcinoma: relation with clinicopathologic characteristics and with retinoblastoma gene product, p53 and p21WAFl immunohistochemical expression. International Journal of Cancer. 74, 171–174.CrossRefGoogle Scholar
  112. (112).
    Dickson, C, Fantl, V., Gillett, C, Brookes, S., Bartek, J., Smith, R., Fisher, C, Barnes, D., and Peters, G. (1995). Amplification of chromosome band llql3 and a role for cyclin Dl in human breast cancer. Cancer Letters. 90, 43–50.PubMedCrossRefGoogle Scholar
  113. (113).
    Michalides, R., Hageman, P., van Tinteren, H., Houben, L., Wientjens, E., Klompmaker, R., and Peterse, J. (1996). A clinicopathological study on overexpression of cyclin Dl and of p53 in a series of 248 patients with operable breast cancer. British Journal of Cancer. 73, 728–734.PubMedGoogle Scholar
  114. (114).
    Zhang, S.Y., Caamano, J., Cooper, F., Guo, X., and Klein-Szanto, A.J. (1994). Immunohistochemistry of cyclin Dl in human breast cancer. American Journal of Clinical Pathology. 102, 695–698.PubMedGoogle Scholar
  115. (115).
    Zukerberg, L.R., Yang, W.L, Gadd, M., Thor, A.D., Koerner, F.C., Schmidt, E.V., and Arnold, A. (1995). Cyclin Dl (PRAD1) protein expression in breast cancer: approximately one-third of infiltrating mammary carcinomas show overexpression of the cyclin Dl oncogene. Modern Pathology. 8, 560–567.PubMedGoogle Scholar
  116. (116).
    Mcintosh, G.G., Anderson, J.J., Milton, I., Steward, M., Parr, A.H., Thomas, M.D., Henry, J.A., Angus, B., Lennard, T.W., and Home, C.H. (1995). Determination of the prognostic value of cyclin Dl overexpression in breast cancer. Oncogene. 11, 885–891.PubMedGoogle Scholar
  117. (117).
    Gillett, C, Smith, P., Gregory, W., Richards, M., Millis, R., Peters, G., and Barnes, D. (1996). Cyclin Dl and prognosis in human breast cancer. International Journal of Cancer. 69, 92–99.CrossRefGoogle Scholar
  118. (118).
    Nielsen, N.H., Emdin, S.O., Cajander, J., and Landberg, G. (1997). Deregulation of cyclin E and Dl in breast cancer is associated with inactivation of the retinoblastoma protein. Oncogene. 14, 295–304.PubMedCrossRefGoogle Scholar
  119. (119).
    Blood, C.H., and Zetter, B.R. (1990). Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochimica et Biophysica Acta 1032, 89–118.PubMedGoogle Scholar
  120. (120).
    Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute 82, 4–6.PubMedCrossRefGoogle Scholar
  121. (121).
    Bosari, S., Lee, A.K., DeLellis, R.A., Wiley, B.D., Heatley, G.J., and Silverman, M.L. (1992). Micro vessel quantitation and prognosis in invasive breast carcinoma. Human Pathology 23, 755–761.PubMedCrossRefGoogle Scholar
  122. (122).
    Gasparini, G., Weidner, N., Bevilacqua, P., Maluta, S., Dalla Palma, P., Caffo, O., Barbareschi, M., Boracchi, P., Marubini, E., and Pozza, F. (1994). Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. Journal of Clinical Oncology 12, 454–466.PubMedGoogle Scholar
  123. (123).
    Fox, S.B., Leek, R.D., Smith, K., Hollyer, J., Greenall, M., and Harris, A.L. (1994). Tumor angiogenesis in node-negative breast carcinomas—relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Research & Treatment 29, 109–116.CrossRefGoogle Scholar
  124. (124).
    Horak, E.R., Leek, R., Klenk, N., LeJeune, S., Smith, K., Stuart, N., Greenall, M., Stepniewska, K., and Harris, A.L. (1992). Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340, 1120–1124.PubMedCrossRefGoogle Scholar
  125. (125).
    Adams, J., Carder, P.J., Downey, S., Forbes, M.A., MacLennan, K., Allgar, V., Kaufman, S., Hallam, S., Bicknell, R., Walker, J.J., Cairnduff, F., Selby, P.J., Perren, T.J., Lansdown, M., and Banks, R.E. (2000). Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Research 60, 2898–2905.PubMedGoogle Scholar
  126. (126).
    Gasparini, G., Toi, M., Gion, M., Verderio, P., Dittadi, R., Hanatani, M., Matsubara, I., Vinante, O., Bonoldi, E., Boracchi, P., Gatti, C, Suzuki, H., and Tominaga, T. (1997). Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. Journal of the National Cancer Institute 89, 139–147.PubMedCrossRefGoogle Scholar
  127. (127).
    Lee, A.H., Dublin, E.A., Bobrow, L.G., and Poulsom, R. (1998). Invasive lobular and invasive ductal carcinoma of the breast show distinct patterns of vascular endothelial growth factor expression and angiogenesis. Journal of Pathology 185, 394–401.PubMedCrossRefGoogle Scholar
  128. (128).
    Linderholm, B., Grankvist, K., Wilking, N., Johansson, M., Tavelin, B., and Henriksson, R. (2000). Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. Journal of Clinical Oncology 18, 1423–1431.PubMedGoogle Scholar
  129. (129).
    Obermair, A., Kucera, E., Mayerhofer, K., Speiser, P., Seifert, M., Czerwenka, K., Kaider, A., Leodolter, S., Kainz, C, and Zeillinger, R. (1997). Vascular endothelial growth factor (VEGF) in human breast cancer: correlation with disease-free survival. International Journal of Cancer 74, 455–458.CrossRefGoogle Scholar
  130. (130).
    Toi, M., Kondo, S., Suzuki, H., Yamamoto, Y., Inada, K., Imazawa, T., Taniguchi, T., and Tominaga, T. (1996). Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77, 1101–1106.PubMedCrossRefGoogle Scholar
  131. (131).
    Brown, L.F., Berse, B., Jackman, R.W., Tognazzi, K., Guidi, A.J., Dvorak, H.F., Senger, D.R., Connolly, J.L., and Schnitt, S.J. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathology 26, 86–91.PubMedCrossRefGoogle Scholar
  132. (132).
    Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J.C., and Abraham, J.A. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. Journal of Biological Chemistry 266, 11947–11954.PubMedGoogle Scholar
  133. (133).
    Ferrara, N., Heinsohn, H., Walder, C.E., Bunting, S., and Thomas, G.R. (1995). The regulation of blood vessel growth by vascular endothelial growth factor. Annals of the New York Academy of Sciences 752, 246–256.PubMedCrossRefGoogle Scholar
  134. (134).
    Toi, M., Inada, K., Suzuki, H., and Tominaga, T. (1995). Tumor angiogenesis in breast cancer: its importance as a prognostic indicator and the association with vascular endothelial growth factor expression. Breast Cancer Research & Treatment 36, 193–204.CrossRefGoogle Scholar
  135. (135).
    Gasparini, G., Toi, M., Miceli, R., Vermeulen, P.B., Dittadi, R., Biganzoli, E., Morabito, A., Fanelli, M., Gatti, C, Suzuki, H., Tominaga, T., Dirix, L.Y., and Gion, M. (1999). Clinical relevance of vascular endothelial growth factor and thymidine phosphorylase in patients with node-positive breast cancer treated with either adjuvant chemotherapy or hormone therapy. Cancer Journal From Scientific American. 5, 101–111.PubMedGoogle Scholar
  136. (136).
    Wu, Y., Saldana, L., Chillar, R., and Vadgama, J.V. (2002). Plasma vascular endothelial growth factor is useful in assessing progression of breast cancer post surgery and during adjuvant treatment. International Journal of Oncology. 20, 509–516.PubMedGoogle Scholar
  137. (137).
    Eppenberger, U., Kueng, W., Schlaeppi, J.M., Roesel, J.L., Benz, C, Mueller, H., Matter, A., Zuber, M., Luescher, K., Litschgi, M., Schmitt, M., Foekens, J.A., and Eppenberger-Castori, S. (1998). Markers of tumor angiogenesis and proteolysis independently define high-and low-risk subsets of node-negative breast cancer patients. Journal of Clinical Oncology. 16, 3129–3136.PubMedGoogle Scholar
  138. (138).
    Beguinot, L., Lyall, R.M., Willingham, M.C., and Pastan, I. (1984). Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc Natl Acad Sci U S A 81, 2384–2388.PubMedCrossRefGoogle Scholar
  139. (139).
    Dunn, W.A., and Hubbard, A.L. (1984). Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics. J Cell Biol 98, 2148–2159.PubMedCrossRefGoogle Scholar
  140. (140).
    Piyathilake, C.J., Frost, A.R., Manne, U., Weiss, H., Bell, W.C., Heimburger, D.C., and Grizzle, W.E. (2002). Differential expression of growth factors in squamous cell carcinoma and precancerous lesions of the lung. Clin Cancer Res 8, 734–744.PubMedGoogle Scholar
  141. (141).
    Liu, X.H., Wiley, H.S., and Meikle, A.W. (1993). Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF)/TGF-alpha receptor. J Clin Endocrinol Metab 77, 1472–1478.PubMedCrossRefGoogle Scholar
  142. (142).
    Schuurmans, A.L., Bolt, J., and Mulder, E. (1988). Androgens stimulate both growth rate and epidermal growth factor receptor activity of the human prostate tumor cell LNCaP. Prostate 12, 55–63.PubMedCrossRefGoogle Scholar
  143. (143).
    Myers, R.B., Brown, D., Oelschlager, D.K., Waterbor, J.W., Marshall, M.E., Srivastava, S., Stockard, C.R., Urban, D.A., and Grizzle, W.E. (1996). Elevated serum levels of pl05(erbB-2) in patients with advanced-stage prostatic adenocarcinoma. Int J Cancer 69, 398–402.PubMedCrossRefGoogle Scholar
  144. (144).
    Myers, R.B., Oelschlager, D., Manne, U., Coan, P.N., Weiss, H., and Grizzle, W.E. (1999). Androgenic regulation of growth factor and growth factor receptor expression in the CWR22 model of prostatic adenocarcinoma. Int J Cancer 82, 424–429.PubMedCrossRefGoogle Scholar
  145. (145).
    Nicholson, S., Halcrow, P., Sainsbury, J.R., Angus, B., Chambers, P., Farndon, J.R., and Harris, A.L. (1988). Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer. Br J Cancer 58, 810–814.PubMedGoogle Scholar
  146. (146).
    Toi, M., Osaki, A., Yamada, H., and Toge, T. (1991). Epidermal growth factor receptor expression as a prognostic indicator in breast cancer. Eur J Cancer 27, 977–980.PubMedCrossRefGoogle Scholar
  147. (147).
    Fox, S.B., Smith, K., Hollyer, J., Greenall, M., Hastrich, D., and Harris, A.L. (1994). The epidermal growth factor receptor as a prognostic marker: results of 370 patients and review of 3009 patients. Breast Cancer Res Treat 29, 41–49.PubMedCrossRefGoogle Scholar
  148. (148).
    Muss, H.B., Thor, A.D., Berry, D.A., Kute, T., Liu, E.T., Koerner, F., Cirrincione, C.T., Budman, D.R., Wood, W.C., Barcos, M., and et al. (1994). c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 330, 1260–1266.PubMedCrossRefGoogle Scholar
  149. (149).
    Slamon, D.J., Godolphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., Levin, W.J., Stuart, S.G., Udove, J., Ullrich, A., and et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.Science 244, 707–712.PubMedCrossRefGoogle Scholar
  150. (150).
    Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W.L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182.PubMedCrossRefGoogle Scholar
  151. (151).
    Paik, S., Hazan, R., Fisher, E.R., Sass, R.E., Fisher, B., Redmond, C, Schlessinger, J., Lippman, M.E., and King, C.R. (1990). Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8, 103–112.PubMedGoogle Scholar
  152. (152).
    Urban, D., Irwin, W., Kirk, M., Markiewicz, M.A., Myers, R., Smith, M., Weiss, H., Grizzle, W.E., and Barnes, S. (2001). The effect of isolated soy protein on plasma biomarkers in elderly men with elevated serum prostate specific antigen. J Urol 165, 294–300.PubMedCrossRefGoogle Scholar
  153. (153).
    Wu, Y., Khan, H., Chillar, R., and Vadgama, J.V. (1999). Prognostic value of plasma HER-2/neu in African American and Hispanic women with breast cancer. Int J Oncol 14, 1021–1037.PubMedGoogle Scholar
  154. (154).
    Hollstein, M., Rice, K., Greenblatt, M.S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R., and Harris, C.C. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22, 3551–3555.PubMedGoogle Scholar
  155. (155).
    Manne, U., Myers, R.B., Moron, C, Poczatek, R.B., Dillard, S., Weiss, H., Brown, D., Srivastava, S., and Grizzle, W.E. (1997). Prognostic significance of Bcl-2 expression and p53 nuclear accumulation in colorectal adenocarcinoma. Int J Cancer 74, 346–358.PubMedCrossRefGoogle Scholar
  156. (156).
    Manne, U., Weiss, H.L., Myers, R.B., Danner, O.K., Moron, C, Srivastava, S., and Grizzle, W.E. (1998). Nuclear accumulation of p53 in colorectal adenocarcinoma: prognostic importance differs with race and location of the tumor. Cancer 83, 2456–2467.PubMedCrossRefGoogle Scholar
  157. (157).
    Isola, J., Visakorpi, T., Holli, K., and Kallioniemi, O.P. (1992). Association of overexpression of tumor suppressor protein p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients. J Natl Cancer Inst 84, 1109–1114.PubMedCrossRefGoogle Scholar
  158. (158).
    Thor, A.D., Moore, D.H., II, Edgerton, S.M., Kawasaki, E.S., Reihsaus, E., Lynch, H.T., Marcus, J.N., Schwartz, L., Chen, L.C., Mayall, B.H., and et al. (1992). Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst 84, 845–855.PubMedCrossRefGoogle Scholar
  159. (159).
    Allred, D.C., Clark, G.M., Elledge, R., Fuqua, S.A., Brown, R.W., Chamness, G.C., Osborne, C.K., and McGuire, W.L. (1993). Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 85, 200–206.PubMedCrossRefGoogle Scholar
  160. (160).
    Silvestrini, R., Benini, E., Daidone, M.G., Veneroni, S., Boracchi, P., Cappelletti, V., Di Fronzo, G., and Veronesi, U. (1993). p53 as an independent prognostic marker in lymph node-negative breast cancer patients. J Natl Cancer Inst 85, 965–970.PubMedCrossRefGoogle Scholar
  161. (161).
    Borresen-Dale, A.L. (2003). TP53 and breast cancer. Hum Mutat 21, 292–300.PubMedCrossRefGoogle Scholar
  162. (162).
    Shiao, Y.H., Chen, V.W., Scheer, W.D., Wu, X.C., and Correa, P. (1995). Racial disparity in the association of p53 gene alterations with breast cancer survival. Cancer Res 55, 1485–1490.PubMedGoogle Scholar
  163. (163).
    Shiao, Y.H., Chen, V.W., Wu, X.C., Scheer, W.D., Lehmann, H.P., Malcom, G.T., Boudreau, D.A., Ruiz, B., and Correa, P. (1996). Racial comparison of p53 alterations in breast cancer: difference in prognostic value. In Vivo 10, 169–173.PubMedGoogle Scholar
  164. (164).
    Blaszyk, H., Vaughn, C.B., Hartmann, A., McGovern, R.M., Schroeder, J.J., Cunningham, J., Schaid, D., Sommer, S.S., and Kovach, J.S. (1994). Novel pattern of p53 gene mutations in an American black cohort with high mortality from breast cancer. Lancet 343, 1195–1197.PubMedCrossRefGoogle Scholar
  165. (165).
    Upadhyay, S., Li, G., Liu, H., Chen, Y.Q., Sarkar, F.H., and Kim, H.R. (1995). bcl-2 suppresses expression of p21WAFl/CIPl in breast epithelial cells. Cancer Res 55, 4520–4524.PubMedGoogle Scholar
  166. (166).
    Vairo, G., Innes, K.M., and Adams, J.M. (1996). Bcl-2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene 13, 1511–1519.PubMedGoogle Scholar
  167. (167).
    Piris, M.A., Pezzella, F., Martinez-Montero, J.C., Orradre, J.L., Villuendas, R., Sanchez-Beato, M., Cuena, R., Cruz, M.A., Martinez, B., Pezella, F., and et al. (1994). p53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time. Br J Cancer 69, 337–341.PubMedGoogle Scholar
  168. (168).
    Bilim, V., Tomita, Y., Kawasaki, T., Katagiri, A., Imai, T., Takeda, M., and Takahashi, K. (1996). Prognostic value of Bcl-2 and p53 expression in urinary tract transitional cell cancer. J Natl Cancer Inst 88, 686–688.PubMedCrossRefGoogle Scholar
  169. (169).
    Sinicrope, F.A., Hart, J., Michelassi, F., and Lee, J.J. (1995). Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin Cancer Res 1, 1103–1110.PubMedGoogle Scholar
  170. (170).
    Manne, U., Weiss, H.L., and Grizzle, W.E. (2000). Bcl-2 expression is associated with improved prognosis in patients with distal colorectal adenocarcinomas. Int J Cancer 89, 423–430.PubMedCrossRefGoogle Scholar
  171. (171).
    Grizzle, W.E., Manne, U., Weiss, H.L., Jhala, N., and Talley, L. (2002). Molecular staging of colorectal cancer in African-American and Caucasian patients using phenotypic expression of p53, Bcl-2, MUC-1 AND p27(kip-l). Int J Cancer 97, 403–409.PubMedCrossRefGoogle Scholar
  172. (172).
    Joensuu, H., Pylkkanen, L., and Toikkanen, S. (1994). Bcl-2 protein expression and long-term survival in breast cancer. Am J Pathol 145, 1191–1198.PubMedGoogle Scholar
  173. (173).
    Lipponen, P., Pietilainen, T., Kosma, V.M., Aaltomaa, S., Eskelinen, M., and Syrjanen, K. (1995). Apoptosis suppressing protein bcl-2 is expressed in well-differentiated breast carcinomas with favourable prognosis. J Pathol 177, 49–55.PubMedCrossRefGoogle Scholar
  174. (174).
    Silvestrini, R., Veneroni, S., Daidone, M.G., Benini, E., Boracchi, P., Mezzetti, M., Di Fronzo, G., Rilke, F., and Veronesi, U. (1994). The Bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst 86, 499–504.PubMedCrossRefGoogle Scholar
  175. (175).
    Bhargava, V., Kell, D.L., van de Rijn, M., and Warnke, R.A. (1994). Bcl-2 immunoreactivity in breast carcinoma correlates with hormone receptor positivity. Am J Pathol 145, 535–540.PubMedGoogle Scholar
  176. (176).
    Krajewski, S., Blomqvist, C, Franssila, K., Krajewska, M., Wasenius, V.M., Niskanen, E., Nordling, S., and Reed, J.C. (1995). Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 55, 4471–4478.PubMedGoogle Scholar
  177. (177).
    Reed, J.C. (1996). Balancing cell life and death: bax, apoptosis, and breast cancer. J Clin Invest 97, 2403–2404.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • David F. Chhieng
    • 1
  • Andra R. Frost
    • 1
  • Lynya I. Talley
    • 2
  • William E. Grizzle
    • 1
  1. 1.Department of PathologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Biostatistics Unit of the Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations