Skip to main content

Chemical Models, Theoretical Calculations, and the Reactivity of Isolated Iron-Molybdenum Cofactor

  • Chapter
Catalysts for Nitrogen Fixation

Abstract

The site of dinitrogen (N2) fixation of molybdenum nitrogenase is almost certainly located on a protein-bound cofactor, commonly referred to as either the M-centre or the iron-molybdenum cofactor (FeMo-cofactor or FeMoco) (see Figure 1). This fascinating cluster has the stoichiometry [MoFe7S9X-homocitrate], where X is a light atom, most probably nitrogen, at the centre of the inorganic part of the cofactor. Over several decades, coordination chemists have sought simple model complexes that reproduce structural and/or functional attributes of the metal centres within the FeMo-cofactor, and these studies have been invaluable in providing an overview of the possibilities for the nitrogenase mechanism. A much more recent approach, which has only become feasible over the last few years with the advent of high performance computers, has been the use of computational methods, such as quantum mechanics, to study both the FeMo-cofactor and the surrounding protein in silico.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agapie, T., Odom, A. L. and Cummins, C. C. (2000). In pursuit of the molybdenum(III) tris(thiolate) fragment: Unusual structure of a dimolybdenum m-nitrido complex. Inorg. Chem., 39, 174–179.

    Article  CAS  Google Scholar 

  • Allen, A. D., and Senoff, C. W. (1965). Nitrogenpentammineruthenium(II) complexes. J. Chem. Soc., Chem. Commun., 621–622.

    Google Scholar 

  • Antonio, M. R., Teo, B. K., Orme-Johnson, W. H., Nelson, M. J., Groh, S. E., Lindahl, P. A., et al.(1982). Iron EXAFS of the iron molybdenum cofactor of nitrogenase. J. Amer. Chem. Soc., 104, 4703–4705.

    Article  CAS  Google Scholar 

  • Arber, J. M., Flood A. C, Garner C. D., Gormal, C. A., Hassnain, S. S., and Smith, B. E. (1988). Iron Kedge X-ray absorption spectroscopy of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Biochem. J., 252, 421–425.

    CAS  Google Scholar 

  • Barrière, F., Evans, D. J., Hughes, D. L., Ibrahim, S. K., Talarmin, J., and Pickett, C. J. (1999). Exo-iron centres linked to MoFeS clusters. J. Chem. Soc., Dalton Trans., 957–964.

    Google Scholar 

  • Barrière, F., Le Mest, Y., Pétillon, F. Y., Poder-Guillou, S., Schollhammer, P., and Talarmin, J. (1996). Electrochemical deprotection of a substrate binding site in Mo2(Cp)2-(µ-SMe)3(µ. -Cl) (Cp = η-C5H5) via chloride-bridge opening. Kinetics of MeCN and Bu1NC binding at this site. J. Chem. Soc., Dalton Trans., 3967–3976.

    Google Scholar 

  • Barrière, F., Pickett, C. J., and Talarmin, J. (2001). Extended Hiickel calculations on functional and structural models of the FeMo cofactor of nitrogenase. Polyhedron, 20, 27–36.

    Article  Google Scholar 

  • Bazhenova, M. A., Bazhenova, T. A., Petrova, G. N., and Mironova, S. A. (2002a). Mutual effects of substrates and inhibitors in reactions catalyzed by the nitrogenase iron-molybdenum cofactor outside the enzyme. Kinetics and Catalysis, 43, 592–602.

    Article  CAS  Google Scholar 

  • Bazhenova, M. A., Bazhenova, T. A., Petrova, G. N., and Mironova, S. A. (2002b). Kinetics and mechanism of acetylene reduction with europium amalgam catalysed by isolated active center of nitrogenase. Kinetics and Catalysis, 43, 351–362.

    Article  CAS  Google Scholar 

  • Bazhenova, T. A., Bazhenova, M. A., Mironova, S. A., Petrova, G. N., Shilova, A. K., Shuvalova, N. I., et al.(1998). Catalytic reduction of acetylene in the presence of molybdenum and iron clusters, including FeMo cofactor of nitrogenase. Inorg. Chim. Acta, 270, 221–226.

    Article  CAS  Google Scholar 

  • Bazhenova, T. A., Bazhenova, M. A., Petrova, G. N., and Shilov, A. E. (1999). Inhibition of acetylene reduction by molecular nitrogen catalyzed by the FeMo-cofactor isolated from nitrogenase. Kinetics and Catalysis, 40, 851–852.

    CAS  Google Scholar 

  • Bentrop, D., Bertini, I., Borsari, M., Cosenza, G., Luchinat, C, and Niikura, Y. (2000). A refined model for [Fe3S4]0 clusters in proteins. Angew. Chem., Int. Ed. Engl., 39, 3620–3621.

    Article  CAS  Google Scholar 

  • Bortels, H. (1930). Molybdän als Katalysator bei der biologischen Stickstoffbindung. Arch. Mikrobiol., 1, 333–342.

    Article  CAS  Google Scholar 

  • Burgess, B. K. (1990). The iron-molybdenum cofactor of nitrogenase. Chem. Rev., 90, 1377–1406.

    Article  CAS  Google Scholar 

  • Burgess, B. K., and Lowe, D. J. (1996). Mechanism of molybdenum nitrogenase. Chem. Rev., 96, 2983–3010.

    Article  CAS  Google Scholar 

  • Burgess, B. K., Stiefel, E. I., and Newton, W. E. (1980). Oxidation-reduction properties and complexation reactions of the iron-molybdenum cofactor of nitrogenase J. Biol. Chem., 255, 353–356.

    CAS  Google Scholar 

  • Chatt, J., Pearman, A. J., and Richards, R. L. (1975). Reduction of monocoordinated molecular nitrogen to ammonia in a protic environment. Nature, 253, 39–40.

    Article  CAS  Google Scholar 

  • Chatt, J., and Richards, R. L. (1982). The reaction of dinitrogen in its metal complexes. J. Organomet. Chem., 239, 65–77.

    Article  CAS  Google Scholar 

  • Clentsmith, G. K. B., Bates, V. M. E., Hitchcock, P. B., and Cloke, F. G. N. (1999). Reductive cleavage of dinitrogen by a vanadium diamidoamine complex: The molecular structure of [V(Me3SiN{CH2CH2NSiMe3}2)(µ-N2)]2 and K[V(Me3SiN{CH2CH2NSiMe3}2)(µ-N2)]2. J. Amer. Chem. Soc., 121, 10444–10445.

    Article  CAS  Google Scholar 

  • Conradson, S. D., Burgess, B. K., Newton, W. E., Dicicco, A., Fillipponi, A., Wu, Z. Y., et al.(1994). Selenol binds to iron in nitrogenase iron-molybdenum cofactor — an EXAFS study. Proc. Natl. Acad. Sci. U.S.A., 91, 1290–1293.

    Article  CAS  Google Scholar 

  • Conradson, S. D., Burgess, B. K., Newton, W. E., Mortenson, L. E., and Hodgson, K. O. (1987). Structural studies of the MoFe protein and its FeMo cofactor by EXAFS. J. Amer. Chem. Soc., 109, 7507–7515.

    Article  CAS  Google Scholar 

  • Conradson, S.D., Burgess, B.K., Vaughn S.A., Roe, A.L., Hedman, B., Hodgson, K.O., et al.(1989). Cyanide and methyl isocyanide binding to the isolated iron molybdenum cofactor of nitrogenase. J. Biol. Chem., 264, 15967–15974.

    CAS  Google Scholar 

  • Coucouvanis, D., and Malinak, S. M. (2001). The chemistry of synthetic Fe-Mo-S clusters and their relevance to the structure and function of the Fe-Mo-S centre in nitrogenase. Prog. Inorg. Chem., 49, 599–662.

    Article  Google Scholar 

  • Cui, Z., Dunford, A. J., Durrant, M. C, Henderson, R. A., and Smith, B. E. (2003). Substrate binding sites of nitrogenase: Kinetic and theoretical studies of cyanide binding to extracted FeMo-cofactor. Inorg. Chem., 42, 6252–6264.

    Article  CAS  Google Scholar 

  • Dance, I. G. (1994). The binding and reduction of dinitrogen at an Fe4 face of the FeMo cluster of nitrogenase. Aust. J. Chem., 47, 979–990.

    Article  CAS  Google Scholar 

  • Dance, I. G. (1997). Calculated details of a mechanism for conversion of N2 to NH3 at the FeMo cluster of nitrogenase. Chem. Commun., 165–166.

    Google Scholar 

  • Dance, I. (1998). Understanding structure and reactivity of new fundamental inorganic molecules: Metal sulfides, metallocarbohedrenes, and nitrogenase. Chem. Commun., 523–530.

    Google Scholar 

  • Dance, I. (2003). The consequences of an interstitial N atom in the FeMo cofactor of nitrogenase. Chem. Commun., 324–325.

    Google Scholar 

  • Davies, S. C, Durrant, M. C, Hughes, D. L., Richards, R. L., and Sanders, J. R. (2000a). Iron, cobalt and vanadium complexes of the N(CH2CH2S)3 3- ligand with chloride, azide, cyanide and carbonyl coligands. J. Chem. Soc., Dalton Trans., 4694–4701.

    Google Scholar 

  • Davies, S. C, Evans, D. J., Hughes, D. L., Konkol M., Richards, R. L., Sanders, J. R. and Sobota, P. (2002a). Mononuclear, binuclear and tetranuclear iron complexes of the N(CH2CH2NS)3 3- (NS3) ligand with nitrosyl co-ligands. J. Chem. Soc., Dalton Trans., 2473–2482.

    Google Scholar 

  • Davies, S. C, Hughes, D. L., Richards, R. L. and Sanders, J. R. (2000b). Molybdenum and tungsten complexes of the N(CH2CH2NS)3 3- (NS3) ligand with oxide, sulfide, diazenide, hydrazide and nitrosyl co-ligands. J. Chem. Soc., Dalton Trans., 719–725.

    Google Scholar 

  • Davies, S. C, Hughes, D. L., Richards, R. L. and Sanders, J. R. (2002b). Synthesis, structure and chemistry of vanadium(IV) compounds with substituted hydrazido(l-) and hydrazido(2-) ligands. J. Chem. Soc., Dalton Trans., 2811–2814.

    Google Scholar 

  • Deng, H., and Hoffmann, R. (1993). How N2 might be activated by the FeMo cofactor in nitrogenase. Angew. Chem., Int. Ed. Engl., 32, 1062–1065.

    Article  Google Scholar 

  • Dilworth, J. R., Hu, J., Thompson, R. M., and Hughes, D. L. (1992). A d4-thiolato-dinitrogen complex. The synthesis and crystal structure of rhenium complex [Re(N2)(SC6H2-2,4,6-Pr-iso3)3)(PPh3)]. J. Chem. Soc., Chem. Commun., 551–553.

    Google Scholar 

  • Duncan, J. S., Nazif, T. M., Verma, A. K., and Lee, S. C. (2003). Iron-arylimide clusters [Fe m (NAr) n Cl4]2- (m, n = 2, 2; 3, 4; 4, 4) from a ferric amide precursor: Synthesis, characterization, and comparison to Fe-S chemistry. Inorg. Chem., 42, 1211–1224.

    Article  CAS  Google Scholar 

  • Dunford, A. J., and Henderson, R. A. (2002). Ligand movement modulates the rate of proton transfer in reactions of [Fe4S4Cl4]2-. Chem. Commun., 360–361.

    Google Scholar 

  • Durrant, M. C. (2001). Controlled protonation of iron-molybdenum cofactor by nitrogenase: A structural and theoretical analysis. Biochem. J., 355, 569–576.

    CAS  Google Scholar 

  • Durrant, M. C. (2002a). An atomic level mechanism for molybdenum nitrogenase. Part 1. Reduction of dinitrogen. Biochemistry, 41, 13934–13945.

    Article  CAS  Google Scholar 

  • Durrant, M. C. (2002b). An atomic level mechanism for molybdenum nitrogenase. Part 2. Proton reduction, inhibition of dinitrogen reduction by dihydrogen, and the HD formation reaction. Biochemistry, 41, 13946–13955.

    Article  CAS  Google Scholar 

  • Durrant, M. C, Fairhurst, S. A., Hughes, D. L., Ibrahim, S. K., Passos, M., Queiros, A., et al (1997). Ligand rotamers and redox isomerism: Metallo-pseudo-prolines. Chem. Commun., 2379–2380.

    Google Scholar 

  • Eady, R. R. (2003). Current status of structure function relationships of vanadium nitrogenase. Coord. Chem. Rev., 237, 23–30.

    Article  CAS  Google Scholar 

  • Einsle, O., Tezcan, F. A., Andrade, S. L. A., Schmid, B., Yoshida, M., Howard, J. B., et al.(2002). Nitrogenase MoFe-protein at 1.16 Å resolution: A central ligand in the FeMocofactor. Science, 297, 1696–1700.

    Article  CAS  Google Scholar 

  • Frank, P., Angove, H. C, Burgess, B. K., and Hodgson, K. O. (2001). Determination of ligand binding constants for the iron-molybdenum cofactor of nitrogenase: Monomers, multimers, and cooperative behavior. J. Biol. Inorg. Chem., 6, 683–697.

    Article  CAS  Google Scholar 

  • Fryzuk, M. D., Johnson, S. A., and Rettig, S. J. (1998). New mode of coordination for the dinitrogen ligand: A dinuclear tantalum complex with a bridging N2 unit that is both side-on and end-on. J. Amer. Chem. Soc., 120, 11024–11025.

    Article  CAS  Google Scholar 

  • George, G. N., Prince, R. C, and Bare, R. E. (1996). Electron paramagnetic resonance spectroscopy of the iron-molybdenum cofactor of Clostridium pasteurianum nitrogenase. Inorg. Chem., 35, 434–438

    Article  CAS  Google Scholar 

  • George, S. J., Ashby, G. A., Wharton, C. W., and Thorneley, R. N. F. (1997). Time-resolved binding of carbon monoxide to nitrogenase monitored by stopped-flow infrared spectroscopy. J. Amer. Chem. Soc., 119, 6450–6451.

    Article  CAS  Google Scholar 

  • George, T. A., and DeBord, J. R. D. (1993). Modeling the nitrogen-nitrogen bond-cleavage step in the reduction of molecular nitrogen to ammonia. Protonation and electron-transfer reactions of dinitrogen, nitrogen hydride, and organonitrogen complexes of molybdenum and tungsten. In E. I. Stiefel, D. Coucouvanis, and W. E. Newton (Eds.), Molybdenum Enzymes, Cofactors and Model Systems(pp. 363–376). Washington, DC: ACS Symposium Series 535.

    Chapter  Google Scholar 

  • Glassman, T. E., Vale, M. G., and Schrock, R. R. (1991). Synthesis and characterization of a series of (pentamethylcyclopentadienyl)tungsten(V) and -(VI) amino, amido, imido, and bridging nitrido complexes and molybdenum analogues. Organometallics, 10, 4046–4057.

    Article  CAS  Google Scholar 

  • Grönberg, K. L. C, Gormal, C. A., Durrant, M. C, Smith, B. E., and Henderson, R. A. (1998a). Why Rhomocitrate is essential to the reactivity of FeMocofactor of nitrogenase: Studies on NifV-extracted FeMo cofactor. J. Amer. Chem. Soc., 120, 10613–10621.

    Article  Google Scholar 

  • Grönberg, K. L. C, Gormal, C. A., Smith, B. E., and Henderson, R. A. (1997). A new approach to identifying substrate binding sites on isolated FeMo-cofactor of nitrogenase. Chem. Commun., 713–714.

    Google Scholar 

  • Grönberg, K. L. C, Henderson, R. A., and Oglieve, K. E. (1998b). A unified mechanism for the stoichiometric reduction of H+ and C2H2 by [Fe4S4(SPh)4]3 in MeCN . J. Chem. Soc., Dalton Trans., 3093–3104.

    Google Scholar 

  • Hall, D. A. and Leigh, G. J. (1996). Reduction of dinitrogen bound at an iron(0) centre. J. Chem. Soc., Dalton Trans., 3539–3541.

    Google Scholar 

  • Harvey, I., Strange, R. W., Schneider, R., Gormal, C. A., Garner, C. D., Hasnain, S. S., et al.(1998). X-ray absorption spectroscopic studies of the binding of ligands to FeMoco of nitrogenase from Klebsiella pneumoniae. Inorg. Chim. Acta, 276, 150–158.

    Article  Google Scholar 

  • Hawkes, T. R., and Smith, B. E (1983). Purification and characterisation of the inactive MoFe protein (NifB-Kpl) of the nitrogenase from NifB mutants of Klebsiella pneumoniae. Biochem. J., 209, 43–50.

    CAS  Google Scholar 

  • Hedman, B., Frank, P., Gheller, S. F., Roe, A. L., Newton, W. E., and Hodgson, K. O. (1988). New structural insights into the iron molybdenum cofactor from Azotobacter vinelandii nitrogenase through sulfur K-edge and molybdenum L X-ray absorption edge spectroscopy studies. J.Amer. Chem. Soc., 110, 3798–3805.

    Article  CAS  Google Scholar 

  • Henderson, R. A., and Oglieve, K. E. (1998). Single protonation labilises but double protonation inhibits substitution of [Fe4S4Cl4]2-. J. Chem. Soc., Dalton Trans., 1731–1733.

    Google Scholar 

  • Hidai, M. (1999). Chemical nitrogen fixation by molybdenum and tungsten complexes. Coord. Chem. Rev., 185–186, 99–108.

    Article  Google Scholar 

  • Hidai, M., Tominari, K., Uchida, Y., and Minoso, A. (1969). Trans-dinitrogen complex of molybdenum. J. Chem. Soc., Chem. Commun., 1392.

    Google Scholar 

  • Hinnemann, B., and Norskov, J. K. (2003). Modeling a central ligand in the nitrogenase FeMo cofactor. J. Amer. Chem. Soc., 125, 1466–1467.

    Article  CAS  Google Scholar 

  • Hitchcock, P. B., Hughes, D. L., Maguire, M. J., Marjani, K., and Richards, R. L. (1997). Disproportionation and reduction of hydrazine at a molybdenumthiolate centre: Crystal structure of [MoH(SC6H2-2,4,6-Pr-iso3)3(NH3)(PMePh2)]. J. Chem. Soc., Dalton Trans., 4747–4752.

    Google Scholar 

  • Hoch, G. E., Schneider, K. C, and Burris, R. H. (1960). Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules. Biochim. Biophys. Acta, 37, 273–279.

    Article  CAS  Google Scholar 

  • Holm, R. H. (1992). Trinuclear and heterometallic cubane-type iron-sulfur clusters: New structural themes in chemistry and biology. Adv. Inorg. Chem., 38, 1–71.

    Article  CAS  Google Scholar 

  • Holm, R. H., Ciurli, S., and Weigel, J. A. (1990). Subsite-specific structures and reactions in native and synthetic [4Fe-4S] cubane-type clusters. Prog. Inorg. Chem., 49, 599–662.

    Google Scholar 

  • Holm, R. H., and Simhon, E. D. (1985). Molybdenum/tungsten-iron-sulfur chemistry: current status and relevance to the native cluster of nitrogenase. In T. G. Spiro (Ed.), Metal ions in biology, molybdenum enzymes(vol. 7, pp 1–87). Wiley: New York.

    Google Scholar 

  • Hoover, T. R., Imperial, J., Ludden, P. W., and Shah, V. K. (1989). Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry, 28, 2768–2771.

    Article  CAS  Google Scholar 

  • Howard, J. B., and Rees, D. C. (1996). Structural Basis of Biological Nitrogen Fixation. Chem. Rev., 96, 2965–2982.

    Article  CAS  Google Scholar 

  • Huang, H. Q., Kofford, M., Simpson, F. B., and Watt, G. D. (1993). Purification, composition, charge and molecular weight of the FeMo-cofactor from Azotobacter vinelandii nitrogenase. J. Inorg. Biochem., 52, 59–75.

    Article  CAS  Google Scholar 

  • Hughes, D. L., Ibrahim, S. K., Pickett, C. J., Querné, G., Laouénan, A., Talarmin, J., et al.(1994). On carboxylate as a leaving group at the active site of Mo nitrogenase: Electrochemical reactions of some Mo and W carboxylates, formation of mono-, di- and tri-hydrides and the detection of an MoH2(N2) intermediate. Polyhedron, 13, 3341–3348.

    Article  CAS  Google Scholar 

  • Kim J. S., and Rees D. C. (1992). Structural models for the metal centres in the nitrogenase molybdenum-iron protein. Science, 257, 1677–1682.

    Article  CAS  Google Scholar 

  • Krahn, E., Weiss, B. J. R., Kröckel, M., Groppe, J., Henckel G., et al.(2002). The Fe-only nitrogenase from Rhodobacter capsulatus: Identification of the cofactor, an unusual high nuclearity iron-sulfur cluster, by Fe K-edge EXAFS and 57Fe Mössbauer spectroscopy. J. Biol. Inorg. Chem., 7, 37–45.

    Article  CAS  Google Scholar 

  • Kuwata, S., and Hidai, M. (2001). Hydrosulfido complexes of transition metals. Coord. Chem. Rev., 213, 211–305.

    Article  CAS  Google Scholar 

  • Kuwata, S., Mizobe, Y., and Hidai, M. (1994). Catalytic N-N bond cleavage of hydrazines at the coordinatively unsaturated diruthenium centre in [Cp*Ru(µ-SR2)RuCp*] (Cp* = η5-C5Me5; R = i-Pr,2,6-Me2C6H3) and isolation of µ-phenyldiazene complexes [Cp*Ru(µ-PhN=NH)( µ-SR2)RuCp*]. Inorg. Chem., 33, 3619–3620.

    Article  CAS  Google Scholar 

  • Laughlin, L. J., and Coucouvanis, D. (1995). Use of [MoFe3S4]3+ single cubanes in the catalytic reduction of acetylene to ethylene and ethane. Identification of molybdenum and iron atoms as catalytic sites during substrate reduction and implications for nitrogenase action. J. Amer. Chem. Soc., 117, 3118–3125.

    Article  CAS  Google Scholar 

  • Lee, H.-I., Benton, P. M. C, Laryukhin, M., Igarashi, R. Y., Dean, D. R., Seefeldt, L. C, et al.(2003). The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. J.Amer. Chem. Soc., 125, 5604–5605.

    Article  CAS  Google Scholar 

  • Lee, H.-I., Hales, B. J., and Hoffman, B. M. (1997). Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-band ENDOR. J. Amer. Chem. Soc., 119, 11395–11400.

    Article  CAS  Google Scholar 

  • Le Gall, T., Ibrahim, S. K., Gormal, C. A., Smith, B. E., and Pickett, C. J. (1999). The isolated iron-molybdenum cofactor of nitrogenase catalyses hydrogen evolution at high potential. Chem. Commun., 773–774.

    Google Scholar 

  • Le Grand, N. (2001). Contribution à l’étude des processus de transfer de couples {H+/e} et de transformation de ligands en relation avec la réduction de l’azote moléculaire. PhD thesis, Université de Bretagne Occidentale.

    Google Scholar 

  • Le Grand, N., Muir, K. W., Pétillon, F. Y., Pickett, C. J., Schollhammer, P., and Talarmin, J. (2002). Electrochemical cleavage of N=N bonds at a Mo2(µ-SMe)3 site relevant to the biological reduction of dinitrogen at a bimetallic sulfur centre. Chem. Eur. J., 8, 3115–3127.

    Article  Google Scholar 

  • Liu, H. B. I., Filipponi, A., Gavini, N., Burgess, B. K., Hedman, B., Diccico, A., et al.(1994). EXAFS studies of FeMo cofactor and MoFe protein — direct evidence for the long range Mo-Fe-Fe interaction and cyanide binding to the Mo in FeMo-cofactor. J. Amer. Chem. Soc., 116, 2418–2423.

    Article  CAS  Google Scholar 

  • Lowe, D. J, Fisher, K., Thorneley, R. N. F., Vaughn, S. A., and Burgess, B. K. (1989). Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii. Biochemistry, 28, 8460–8466.

    Article  CAS  Google Scholar 

  • Lovell, T., Li, J., Case, D. A., and Noodleman, L. (2002a). FeMo cofactor of nitrogenase: Energetics and local interactions in the protein environment. J. Biol. Inorg. Chem., 7, 735–749.

    Article  CAS  Google Scholar 

  • Lovell, T., Li, J., Case, D. A., and Noodleman, L. (2002b). Binding modes for the first coupled electron and proton addition to FeMoco of nitrogenase. J. Amer. Chem. Soc., 124, 4546–4547.

    Article  CAS  Google Scholar 

  • Lovell, T., Li, J., Liu, T., Case, D. A., and Noodleman, L. (2001). FeMo cofactor of nitrogenase: A density functional study of states MN, Mox, MR, and M1. J. Amer. Chem. Soc.,123, 12392–12410.

    Article  CAS  Google Scholar 

  • Lovell, T., Liu, T., Case, D. A., and Noodleman, L. (2003). Structural, spectroscopic, and redox consequences of a central ligand in the FeMoco of nitrogenase: A density functional theoretical study. J. Amer. Chem. Soc., 125, 8377–8383.

    Article  CAS  Google Scholar 

  • Lovell, T., Torres, R. A., Han, W. G., Liu, T., Case, D. A., and Noodleman, L. (2002c). Metal substitution in the active site of nitrogenase MFe7S9 (M = Mo4+, V,+, Fe3+). Inorg. Chem., 41, 5744–5753.

    Article  CAS  Google Scholar 

  • Ma, L., Gavini, N., Liu, H. I., Hedman, B., Hodgson, K. O., and Burgess, B. K. (1994). Large-scale isolation and characterisation of the molybdenum-iron cluster from nitrogenase. J. Biol. Chem., 269, 18007–18015.

    CAS  Google Scholar 

  • Masumori, T., Seino, H., Mizobe, Y., and Hidai, M. (2000). The cubane-type Mo2Ir2S4 cluster containing an organohydrazido(2(-)) ligand on the Mo site. Inorg. Chem., 39, 5002–5003.

    Article  CAS  Google Scholar 

  • Mayer, S. M., Gormal, C. A., Smith, B. E., and Lawson, D. M. (2002). Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco). J. Biol. Chem., 277, 35263–35266.

    Article  CAS  Google Scholar 

  • McKenna, C. E., Jones, J. B., Eran, H., and Huang, C. W. (1979). Reduction of cyclopropene as criterion of active-site homology between nitrogenase and its Fe-Mo cofactor. Nature, 280, 611–612.

    Article  CAS  Google Scholar 

  • McKenna, C. E., Stephens, P. J., Eran, H., Luo, G.-M., Zhang, F. X., Ding, M., and Nguyen, H. T. (1984). Substrate interactions with nitrogenase and its Fe-Mo cofactor: Chemical and spectroscopic investigations. In C. Veeger and W. E. Newton (Eds.), Advances in Nitrogen Fixation Research(pp. 115–122). The Hague: Nifhoff, Junk.

    Chapter  Google Scholar 

  • McLean, P. A., and Dixon, R. A. (1981). Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature, 292, 655–656.

    Article  CAS  Google Scholar 

  • McLean, P. A., Wink, D. A., Chapman, S. K., Hickman, A. B., McKillop, D. M., and Orme-Johnson, W. H. (1989). A new method for extraction of iron molybdenum cofactor (FeMoco) from nitrogenase adsorbed to DEAE-cellulose. 1. Effects of anions, cations, and preextraction treatments. Biochemistry, 28, 9402–9406.

    Article  CAS  Google Scholar 

  • McMillan, R. S., Renaud, J., Reynolds, J. G., and Holm, R. H. (1979). Biologically related iron-sulfur clusters as reaction centers. Reduction of acetylene to ethylene in systems based on [Fe4S4(SR)4]3-. J. Inorg. Biochem., 11, 213–227.

    Article  CAS  Google Scholar 

  • Nelson, M. J., Levy, M. A., and Orme-Johnson W. H. (1983). Metal and sulfur composition of iron molybdenum cofactor of nitrogenase. Proc. Natl. Acad. Sci. U.S.A., 80, 147–150.

    Article  CAS  Google Scholar 

  • Newton, W. E., Gheller, S. F., Feldman, B. J., Dunham, W. R., and Schultz, F. A. (1989). Isolated iron-molybdenum cofactor of nitrogenase exists in multiple forms in its oxidised and semi-reduced states. J. Biol. Chem., 264, 1924–1927.

    CAS  Google Scholar 

  • Nishibayashi, Y., Takemoto, S., Iwai, S., and Hidai, M. (2000). Formation of ammonia in the reactions of a tungsten dinitrogen with ruthenium dihydrogen complexes under mild reaction conditions. Inorg. Chem., 39, 5946–5947.

    Article  CAS  Google Scholar 

  • Nishibayashi, Y., Wakiji, I., Hirata, K., Rakowski DuBois, M., and Hidai, M. (2001). Protonation of coordinated N2 on tungsten with H2 mediated by sulfido-bridged dinuclear molybdenum complexes. Inorg. Chem., 40, 578–580.

    Article  CAS  Google Scholar 

  • Noodleman, L., Lovell, T., Liu, T., Himo, F., and Torres, R. A. (2002). Insights into properties and energetics of iron-sulfur proteins from imple clusters to nitrogenase. Curr. Opinion in Chem. Biol., 6, 259–273.

    Article  CAS  Google Scholar 

  • Palermo, R. E., Singh, R., Bashkin, J. K., and Holm, R. H. (1984). Molybdenum atom ligand substitution reactions of molybdenum-iron-sulfur (MoFe3S4) cubane-type clusters: Synthesis and structures of clusters containing molybdenum-bound pseudosubstrates of nitrogenase. J. Amer. Chem. Soc., 106, 2600–2612.

    Article  CAS  Google Scholar 

  • Palmer, J. G., Doemeny, P. A., and Schrauzer, G. N. (2001). The chemical evolution of a nitrogenase model. XXIII. The nature of the active site and the role of homocitric acid in MoFe-nitrogenase. Z Naturforsch., 56b, 386–393.

    Google Scholar 

  • Peters, J. C, Cherry, J.-P. F., Thomas, J. C, Baraldo, L., Mindiola, D. J., Davis, W. M, et al.(1999). Redox-catalyzed binding of dinitrogen by molybdenum N-tert-hydrocarbylanilide complexes: Implications for dinitrogen functionalization and reductive cleavage. J. Amer. Chem. Soc., 121, 10053–10067.

    Article  CAS  Google Scholar 

  • Pétition, F. Y., Schollhammer, P., Talarmin, J., and Muir, K. W. (1998). Dinuclear molybdenum thiolatobridged compounds: syntheses, reactivities and electrochemical studies of site-substrate interactions. Coord. Chem. Rev., 178–180, 203–247.

    Article  Google Scholar 

  • Pétillon, F. Y., Schollhammer, P., Talarmin, J., and Muir, K. W. (1999). Electrochemical reduction of nitrogenous ligands at a conserved dinuclear metal-sulfur site: Cleavage of the N=N bond of phenyldiazene and reduction of an imide to NH3. Inorg. Chem.,38, 1954–1955.

    Article  Google Scholar 

  • Pickett, C. J. (1996). The Chatt cycle and the mechanism of enzymic reduction of molecular nitrogen. J. Biol. Inorg. Chem., 1, 601–606.

    Article  CAS  Google Scholar 

  • Pickett, C. J., and Talarmin, J. (1985). Electrosynthesis of ammonia. Nature, 317, 652–653.

    Article  CAS  Google Scholar 

  • Pickett, C. J., Vincent, K. A., Ibrahim, S. K., Gormal, C. A., Smith, B. E., and Best, S. P. (2003). Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: Delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum. Chem. Eur. J., 9, 76–87.

    Article  CAS  Google Scholar 

  • Rawlings, J., Shah, V. K., Chisnell, J. R., Brill, W. J., Zimmerman, R., Miink, E., et al.(1978). Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. J. Biol. Chem., 253, 1001–1004.

    CAS  Google Scholar 

  • Rehder, D. (1999). The coordination chemistry of vanadium as related to its biological functions. Coord. Chem. Rev., 182,291–322.

    Article  Google Scholar 

  • Ribbe, M., Gadkari, D., and Meyer, O. (1997). N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from 02 by a molybdenum-CO dehydrogenase. J. Biol. Chem., 272, 26627–26633.

    Article  CAS  Google Scholar 

  • Richards, R. L. (1996). Reactions of small molecules at transition metal sites: Studies relevant to nitrogenase, an organometallic enzyme. Coord. Chem. Rev., 154, 83–97.

    Article  CAS  Google Scholar 

  • Richards, A. J. M., Lowe, D. J., Thompson A. J., and Smith, B. E. (1994). Electron paramagnetic resonance and magnetic circular dichroism studies of the binding of cyanide and thiols to the iron molybdenum cofactor from Klebsiella pneumoniae nitrogenase. Biochem. J., 297, 373–378.

    CAS  Google Scholar 

  • Rod, T. H., Hammer, B., and Nørskov, J. K. (1999). Nitrogen adsorption and hydrogenation on a MoFe6S9 complex. Phys. Rev. Lett., 82, 4054–4057.

    Article  Google Scholar 

  • Rod, T. H., Logadottir, A., and Nørskov, J. K. (2000a). Ammonia synthesis at low temperatures. J. Chem. Phys., 112, 5343–5347.

    Article  CAS  Google Scholar 

  • Rod, T. H., and Nørskov, J. K. (2000b). Modeling the nitrogenase cofactor. J. Amer. Chem. Soc., 122, 12751–12763.

    Article  CAS  Google Scholar 

  • Sanakis, Y., Power, P. P., Stubna, A., and Münck, E. (2002). Mössbauer study of the three-coordinate planar Fe thiolate complex [Fe(SR)3]- (R = C6H2-2,4,6-tBu3): Model for the trigonal iron sites of the MoFe7S9:homocitrate cofactor of nitrogenase. Inorg. Chem., 41, 2690–2696.

    Article  CAS  Google Scholar 

  • Schrock, R. R. (1997a). High oxidation state coordination chemistry with triamidoamine tungsten and molybdenum complexes. Pure Appl. Chem., 69, 2197–2203.

    Article  CAS  Google Scholar 

  • Schrock, R. R. (1997b). Transition metal complexes that contain a triamidoamine ligand. Acc. Chem. Res., 30, 9–16.

    Article  CAS  Google Scholar 

  • Schrock, R. R., Glassman, T. E., and Vale, M. G. (1991). Cleavage of the N-N bond in a high-oxidation-state tungsten or molybdenum hydrazine complex and the catalytic reduction of hydrazine. J. Amer. Chem. Soc., 113, 125–126.

    Article  Google Scholar 

  • Schrock, R. R., Glassman, T. E., Vale, M. G., and Kol, M. (1993). High-oxidation-state pentamethylcyclopentadienyl tungsten hydrazine and hydrazido complexes and cleavage of the N-N bond. J. Amer. Chem. Soc., 115, 1760–1772.

    Article  CAS  Google Scholar 

  • Schrock, R. R., Kolodziej, R. M., Liu, A. H., Davis, W. H., and Vale, M. G. (1990). Preparation and characterization of two high oxidation state molybdenum dinitrogen complexes: [MoCp*(Me)3]2(µ-N2) and [MoCp*(Me)3](µ-N2)[WCp’(Me)3]. J. Amer. Chem. Soc.,112, 4338–4345.

    Article  CAS  Google Scholar 

  • Schultz, F. A., Feldman, B. J., Gheller, S. F., and Newton, W. E. (1990). Effects of oxidation-state, solvent acidity and thiophenol on the electrochemical properties of iron molybdenum cofactor from nitrogenase. Inorg. Chim. Acta, 170, 115–122.

    Article  CAS  Google Scholar 

  • Schultz, F. A., Gheller, S. F., Burgess, B. K., Lough, S., and Newton, W. E. (1985). Electrochemical characterisation of the iron molybdenum cofactor from Azotobacter vinelandii nitrogenase. J. Amer. Chem. Soc., 107, 5364–5368

    Article  CAS  Google Scholar 

  • Schultz, F. A., Newton, W. E., and Gheller, S. F. (1987). Electrochemistry of the iron molybdenum cofactor of nitrogenase- evidence for multiple speciation and electrocatalytic behaviour. J. Electrochem. Soc., 134, C494.

    Google Scholar 

  • Schultz, F. A., Newton, W. E., and Gheller, S. F. (1988). Iron molybdenum cofactor of nitrogenase-electrochemical determination of the electron stoichiometry of the oxidised/semi-reduced couple. Biochem. Biophys. Res. Commun., 152, 629–635.

    Article  CAS  Google Scholar 

  • Seilmann, D., Blum, D. C. F., and Heinemann, F. W. (2002). Transition metal complexes with sulfur ligands. Part CLV. Structural and spectroscopic characterization of hydrogen bridge diastereomers of [µ-N2H2{Fe(PR3)(‘tpS4’)}2] diazene complexes [‘tpS42- = 1,2-bis(2-mercaptophenylthio)-phenylene(2-)]. Inorg. Chim. Acta, 337, 1–10.

    Article  Google Scholar 

  • Sellmann, D., Fürsattel, A., and Sutter, J. (2000). The nitrogenase catalyzed N2 dependent HD formation: A model reaction and its significance for the FeMoco function. Coord Chem. Rev., 200–202, 545–561.

    Article  Google Scholar 

  • Sellmann, D., Hautsch, B., Rösier, A., and Heinemann, F. W. (2001). [Ru(N2)(PiPr3)(‘N2Me2S2’)]: Coordination of molecular N2 to metal thiolate cores under mild conditions. Angew. Chem., Int. Ed. Engl., 40, 1505–1507.

    Article  CAS  Google Scholar 

  • Sellmann, D., and Sutter, J. (1997). In quest of competitive catalysts for nitrogenases and other metal sulfur enzymes. Acc. Chem. Res., 30, 460–469.

    Article  CAS  Google Scholar 

  • Shah, V. K. (1980). Isolation of the iron-molybdenum cofactor from nitrogenase. Methods in Enzymol. 69, 792–801.

    Article  CAS  Google Scholar 

  • Shah, V. K., and Brill, W. J. (1977). Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. U.S.A., 74, 3249–3253.

    Article  CAS  Google Scholar 

  • Siegbahn, P. E. M., Westerberg, J., Svensson, M., and Crabtree, R. H. (1998). Nitrogen fixation by nitrogenases: A quantum chemical study. J. Phys. Chem. B, 1615–1623.

    Google Scholar 

  • Smith, B. E., Bishop, P. E., Dixon, R. A., Eady, R. R., Filler, W. A., Lowe, et al.(1985). The iron-molybdenum cofactor of nitrogenase. In H. J. Evans, P. J. Bottomley, and W. E. Newton (Eds.), Nitrogen Fixation Research Progress(p. 597). Dordrecht: Martinus Nijhoff.

    Chapter  Google Scholar 

  • Smith, B. E., Durrant, M. C., Fairhurst, S. A., Gormal, C. A., Grönberg, K. L. C, Henderson, R. A., et al.(1999). Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev., 186, 669–687.

    Article  Google Scholar 

  • Smith, J. M., Lachicotte, R. J., Pittard, K. A., Cundari, T. R., Lukat-Rodgers, G., Rodgers, K. R., and Holland, P. L. (2001). Stepwise reduction of dinitrogen bond order by a low-coordinate iron complex. J. Amer. Chem. Soc., 123, 9222–9223.

    Article  CAS  Google Scholar 

  • Solari, E., Da Silva, C, Iacono, B., Hesschenbrouck, J., Rizzoli, C, Scopelliti, R., et al.(2001). Photochemical activation of the N=N bond in a dimolybdenum-dinitrogen complex: Formation of a molybdenum nitride. Angew. Chem., Int. Ed. Engl., 40, 3907–3909.

    Article  CAS  Google Scholar 

  • Stavrev, K. K., and Zerner, M. C. (1996). A theoretical model for the active site of nitrogenase. Chem. Eur. J., 2, 83–87.

    Article  CAS  Google Scholar 

  • Stavrev, K. K., and Zerner, M. C. (1997). On the reduced and oxidised forms of the FeMo-cofactor of Azotobacter vinelandii nitrogenase. Theor. Chem. Ace, 96, 141–145.

    Article  CAS  Google Scholar 

  • Stavrev, K. K., and Zerner, M. C. (1998). Studies on the hydrogénation steps of the nitrogen molecule at the Azotobacter vinelandii nitrogenase site. Int. J. Quantum, Chem., 70, 1159–1168.

    Article  CAS  Google Scholar 

  • Sutton, D. (1993). Organometallic diazo compounds. Chem. Rev., 93, 955–1022.

    Article  Google Scholar 

  • Szilagyi, R. K., Musaev, D. G., and Morokuma, K. (2000). Theoretical studies of biological nitrogen fixation. Part II. Hydrogen bonded networks as possible reactant and product channels. J.Mol. Struct. (Theochem.), 506, 131–146.

    Article  CAS  Google Scholar 

  • Szilagyi, R. K., Musaev, D. G., and Morokuma, K. (2001). Theoretical studies of biological nitrogen fixation. I. Density functional modeling of the Mo-site of the FeMocofactor. Inorg. Chem., 40, 766–775.

    Article  CAS  Google Scholar 

  • Ter Meulen, H. (1932). Sur l’accumulation du molybdène chez quelques plantes aquatiques. Rec. Trav. Chim. Pays-Bas., 51, 549–550.

    Article  Google Scholar 

  • Walters, M. A., Chapman, S. K., and Orme-Johnson, W. H. (1986). The nature of amide ligation to the metal sites of FeMoco. Polyhedron, 5, 561–565.

    Article  CAS  Google Scholar 

  • Wink, D. A, McLean, P. A., Hickman, A. B., and Orme-Johnson, W. H. (1989). A new method for extraction of iron molybdenum cofactor from nitrogenase adsorbed to DEAE-cellulose. Biochemistry, 28, 9407–9412

    Article  CAS  Google Scholar 

  • Wucherer, E. J., Tasi, M., Hansert, B., Powell, A. K., Garland, M. T., Halet, J. F., et al.(1989). Intramolecular conversion of an azoalkane ligand to two nitrene ligands on a triiron cluster. Inorg. Chem., 28, 3564–3512.

    Article  CAS  Google Scholar 

  • Yandulov, D. V., and Schrock, R. R. (2002). Reduction of dinitrogen to ammonia at a well-protected reaction site in a molybdenum triamidoamine complex. J. Amer. Chem. Soc., 124, 6252–6253.

    Article  CAS  Google Scholar 

  • Yandulov, D. V., and Schrock, R. R. (2003). Catalytic reduction of dinitrogen to ammonia at a single molybdenum centre. Science, 301, 76–78.

    Article  CAS  Google Scholar 

  • Yandulov, D. V., Schrock, R. R., Rheingold, A. L., Ceccarelli, C, and Davis, W. M. (2003). Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents. Inorg. Chem., 42, 796–813.

    Article  CAS  Google Scholar 

  • Yoo, S. J., Angove, H. C, Papaefthymiou, V., Burgess, B. K., and Münck, E. (2000). Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective 57Fe enrichement of the M-centres. J. Amer. Chem. Soc., 122, 4926–4936.

    Article  CAS  Google Scholar 

  • Yoshida, T., Adachi, T., Kaminaka, M., and Ueda, T. (1988). A novel molybdenum(O) dinitrogen complex containing crown thioether as the sole auxiliary ligand: trans ,-[Mo(N2)2(Me8[16]aneS4)] (Me8[16]aneS4 = 3,3,7,7,11,11,15,15-octamethyl-1,5,9,13-tetrathiacycloexadecane). J. Amer. Chem. Soc., 110, 4872–4873.

    Article  CAS  Google Scholar 

  • Zhong, S.-J., and Liu, C.-W. (1997). Possible binding modes for dinitrogen activation by the FeMo cofactor in nitrogenase. Polyhedron, 16, 653–661.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barrière, F., Durrant, M.C., Pickett, C.J. (2004). Chemical Models, Theoretical Calculations, and the Reactivity of Isolated Iron-Molybdenum Cofactor. In: Smith, B.E., Richards, R.L., Newton, W.E. (eds) Catalysts for Nitrogen Fixation. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3611-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3611-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6675-6

  • Online ISBN: 978-1-4020-3611-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics