Skip to main content

The Structures of The Nitrogenase Proteins and Stabilized Complexes

  • Chapter
Catalysts for Nitrogen Fixation

Abstract

The structural characterization of the nitrogenase components has contributed, and continues to contribute, significantly to our understanding of enzymatic nitrogen reduction. Nitrogenase structure/function has been a rich area of research for several decades (reviewed in Kim and Rees, 1994; Peters et al., 1995; Howard and Rees, 1996; Rees and Howard, 1999; 2000; Rees 2002; Lawson and Smith, 2002) and the advent of detailed structures of the nitrogenase components is a relatively recent event. The structures of the Fe protein and MoFe protein from Azotobacter vinelandii appeared in the journals Science and Nature in 1992 to an enthusiastic audience (Georgiadis et al., 1992; Kim and Rees, 1992a; Kim and Rees, 1992b). These structures have had a significant impact on nitrogenase research because they (1) provide the basis for rationalizing biochemical results and (2) serve to design models for catalysis that can be tested through biochemical and biophysical studies. Subsequent to the structural characterization of the native nitrogenase components, the crystallographic analysis of defined states of the component proteins relevant to catalysis has offered significant insights to the nitrogenase research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. M., Chatterjee, R., Madden, M. S., Ludden, P. W., and Shah, V. K. (1994). Biosynthesis of the iron-mol ybde num cofactor of nitrogenase. Crit Rev. Biotechno 1., 14, 225–249.

    Article  CAS  Google Scholar 

  • Benton, P. M. C ., Mayer, S. M., Shao, J., Hoffman, B. M., Dean, D. R., and Seefeldt, L. C. (2001). Interactio n of acet ylene a nd cyanide with the resting state of nitrogenase alphas-substituted MoFe proteins. Biochemistry, 40, 13816–13825.

    Article  CAS  Google Scholar 

  • Bolin, J. T., Campobasso, N., Muchmore, S. W., Morgan, T. V., and Mortenson, L. E. (1993). The stucture and environment of the metal clusters in the nitrogenase MoFe protein from Clostridium pasteurianum. In E. I. Stiefel, D. Coucouvanis, and W. E. Newton (Eds), Molybdenum Enzymes, Cofactors and Model Systems(pp. 186–195). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Brigle, K. E., Newton, W. E., and Dean, D. R. (1985). Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene, 37, 37–44.

    Article  CAS  Google Scholar 

  • Chan, M. K., Kim, J., and Rees, D. C. (1993). The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures. Science, 260, 792–794.

    Article  CAS  Google Scholar 

  • Chiu, H., Peters, J. W., Lanzilotta, W. N., R yle, M. J., Seefeldt, L. C, Howard, J. B., and Rees, D. C. (2001). MgATP-bound and nucleotide-free st ructures of a nitr ogenase prot ein complex bet ween the Leu-127-delta-Fe protein and the Mo Feprotein. Biochemistry, 40, 641–650.

    Article  CAS  Google Scholar 

  • Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C, and Dean, D. R. (1998). Catal ytic and bio physical properti es of a nitrogena se apo-MoF e pro tein produced by a nifB deletion mutant o fAzotobacte r vinelandii. Biochem istry, 37, 12611–12623.

    Article  CAS  Google Scholar 

  • Crane, B. R., Siegel, L. M., and Getzoff, E. D. (1995). Sulfite reductase structure at 1.6 A: Evolution and catalysis for reduction of inorganic anions. Science, 270, 59–67.

    Article  CAS  Google Scholar 

  • Crane, B. R., Siegel, L. M, and Getzoff, E. D. (1997). Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: Heme activation via reduction-gated exogenous ligand exchange. Biochemistry, 36, 12101–1211.

    Article  CAS  Google Scholar 

  • Dance, I. G. (1994). The binding and reduction of di nitrogen at an Fe4 face of the FeMo cluster of nitrogenase. Aust. J. Chem ., 47, 979–990.

    Article  CAS  Google Scholar 

  • Dance, I. (1996). Theore tical inve stigations of the me chanism of biological nitrogen fixation at the FeMo cluster site. J. Biol. Inorg. Chem., 1, 581–586.

    Article  CAS  Google Scholar 

  • Dance, L. (1998). Understanding structure and reactivity of new fundamental inorganic molecules: Metal sulfides, metallocarbohedrenes, and nitrogenase. Chem. Commun., 523–530.

    Google Scholar 

  • Darnault, C, Volbeda, A., Kim, E. J., Legrand, P., Vernede, X., Lindahl, P. A., and Fontecilla-Camps, J. C. (2002). Ni-Zn-[Fe(4)-S(4)] and Ni-Ni-[Fe(4)-S(4)] clusters in closed and open alpha subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nature Struct. Biol., 10, 271–279.

    Article  Google Scholar 

  • Dean, D. R., Setterquist, R. A., Brigle, K. E., Scott, D. J., Laird, N. F., and Newton, W. E. (1990). Evidence that conserved residues Cys-62 and Cys-154 within the Azotobacter vinelandii nitrogenase MoFe protein a-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Mol. Microbiol., 4, 1505–1512.

    Article  CAS  Google Scholar 

  • Deng, H., and Hoffman, R. (1993). How N2 might be activated by the FeMo-cofactor in nitrogenase. Angew. Chem. Int. Ed. Engl., 32, 1062–1065.

    Article  Google Scholar 

  • Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R., and Meyer, O. (2001). Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science, 293, 1281–1285.

    Article  CAS  Google Scholar 

  • Doukov, T. L., Iverson, T. M., Seravalli, J., Ragsdale, S. W., and Drennan, C. L. (2002). A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science,298, 567–572.

    Article  CAS  Google Scholar 

  • Drennan, C. L., Heo, J., Sintchak, M. D., Schreiter, E., and Ludden, P. W. (2001). Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc.Natl Acad. Sci. U.S.A., 98, 11973–11978.

    Article  CAS  Google Scholar 

  • Durrant, M. C. (2001a). Controlled protonation of iron-molybdenum cofactor by nitrogenase: A structural and theoretical analysis. Biochem. J., 355, 569–576.

    CAS  Google Scholar 

  • Durrant, M. C. (2001b). A molybdenum-centred model for nitrogenase catalysis. Inorg. Chem. Commun., 4, 60–62.

    Article  CAS  Google Scholar 

  • Duyvis, M. G., Wassink, H., and Haaker, H. (1996). Formation and characterization of a transition state complex of Azotobacter vinelandii nitrogenase. FEBS Lett., 380, 233–236.

    Article  CAS  Google Scholar 

  • Einsle, O., Tezcan, F. A., Andrade, S. L., Schmid, B., Yoshida, M., Howard, J. B., and Rees, D. C. (2002). Nitrogenase MoFe-protein at 1.16 A resolution: A central ligand in the FeMo-cofactor. Science, 297,1696–1700.

    Article  CAS  Google Scholar 

  • Gavini, N., and Burgess, B. K. (1992). FeMo cofactor synthesis by a nifli mutant with altered MgATP reactivity. J. Biol Chem., 267, 21179–21186.

    CAS  Google Scholar 

  • Georgiadis, M. M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J. J., and Rees, D. C. (1992). Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science, 257, 1653–1659.

    Article  CAS  Google Scholar 

  • Grossman, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., and Eady, R. R. (1997). The first glimpse of a complex of nitrogenase component proteins by solution X-ray scattering: Conformation of the electron transfer transition state complex of Klebsiella pneumoniae nitrogenase. J. Mol Biol., 266, 642–648.

    Article  CAS  Google Scholar 

  • Grossman, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., Eady, R. R., Schindelin, H., et al. (1999). Comparing crystallographic and solution structures of nitrogenase complexes. Acta Crystallogr. D, 55(Pt 4),121–122.

    Article  Google Scholar 

  • Hawkes, T. R., and Smith, B. E. (1983). Purification and characterization of the inactive MoFe protein (NifB-Kpl) of the nitrogenase from nifB mutants of Klebsiella pneumoniae. Biochem. J., 209, 43–50.

    CAS  Google Scholar 

  • Higuchi, Y., Yagi, T., and Yasuoka, N. (1997). Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure, 5, 1671–1680.

    Article  CAS  Google Scholar 

  • Holland, D., Zilberstein, A., Zamir, A., and Sussman, J. L. (1987). A quantitative approach to sequence comparisons of nitrogenase MoFe protein alpha- and beta-subunits including the newly sequenced nifK gene from Klebsiella pneumoniae. Biochem. J., 247, 277–285.

    CAS  Google Scholar 

  • Howard, J. B., and Rees, D. C. (1994). Nitrogenase: A nucleotide-dependent molecular switch. Annu. Rev. Biochem., 63, 235–264.

    Article  CAS  Google Scholar 

  • Howard, J. B., and Rees, D. C. (1996). Structural basis of biological nitrogen fixation. Chem. Rev., 96, 2965–2982.

    Article  CAS  Google Scholar 

  • Imperial, J., Shah, V. K., Ugalde, R. A., Ludden, P. W., and Brill, W. J. (1987). Iron-molybdenum cofactor synthesis in Azotobacter vinelandii nif mutants. J. Bacteriol., 169, 1784–1786.

    CAS  Google Scholar 

  • Jang, S. B., Seefeldt, L. C, and Peters, J. W. (2000a). Insights into nucleotide signal transduction in nitrogenase: Structure of an iron protein with MgADP bound. Biochemistry, 39, 14745–14752.

    Article  CAS  Google Scholar 

  • Jang, S. B., Seefeldt, L. C, and Peters, J. W. (2000b). Modulating the midpoint potential of the [4Fe-4S] cluster of the nitrogenase Fe protein. Biochemistry, 39, 641–648.

    Article  CAS  Google Scholar 

  • Kent, H. M., Baines, M., Gormal, C, Smith, B. E. and Buck, M. (1990). Analysis of site-directed mutations in the alpha- and beta-subunits of Klebsiella pneumoniae nitrogenase. Mol. Microbiol., 4, 1497–1504.

    Article  CAS  Google Scholar 

  • Kent, H. M, Loannidis, I., Gormal, C, Smith, B. E., and Buck, M. (1989). Site-directed mutagenesis of the Klebsiella pneumoniae nitrogenase. Effects of modifying conserved cysteine residues in the alpha-and beta-subunits. Biochem. J., 264, 257–264.

    CAS  Google Scholar 

  • Kim, J., and Rees, D. C. (1992a). Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature, 360, 553–560.

    Article  CAS  Google Scholar 

  • Kim, J., and Rees, D. C. (1992b). Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science, 257, 1677–1682.

    Article  CAS  Google Scholar 

  • Kim, J., and Rees, D. C. (1994). Nitrogenase and biological nitrogen fixation. Biochemistry, 33, 389–397.

    Article  CAS  Google Scholar 

  • Koonin, E. V. (1993). A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J. Mol. Biol., 229, 1165–1174.

    Article  CAS  Google Scholar 

  • Lammers, P. J., and Haselkorn, R. (1983). Sequence of the nifD gene coding for the alpha-subunit of dinitrogenase from the cyanobacterium Anabaena. Proc. Natl. Acad. Sci. U.S.A., 80, 4723–4727.

    Article  CAS  Google Scholar 

  • Langen, R., Jensen, G. M., Jacob, U., Stephens, P. J., and Warshel, A. (1992). Protein control of iron-sulfur cluster redox potentials. J. Biol. Chem., 267, 25625–25627.

    CAS  Google Scholar 

  • Lanzilotta, W. N., and Seefeldt, L. C. (1996). Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Biochemistry, 35, 16770–16776.

    Article  CAS  Google Scholar 

  • Lawson, D. M., and Smith, B. E. (2002). Molybdenum nitrogenases: A crystallographic and mechanistic view. Met. Ions Biol. Syst, 39, 75–119.

    CAS  Google Scholar 

  • Lovell, T, Li, J., Liu, T, Case, D. A., and Noodleman, L. (2001). FeMo cofactor of nitrogenase: A density functional study of states MN, Mox, MR, and M1. J. Am. Chem. Soc., 123, 12392–12410.

    Article  CAS  Google Scholar 

  • May, H. D., Dean, D. R., and Newton, W. E. (1991). Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the beta-subunit. Biochem. J., 277,457–464.

    CAS  Google Scholar 

  • Mayer, S. M., Lawson, D. M., Gormal, C. A., Roe, S. M., and Smith, B. E. (1999). New insights into structure-function relationships in nitrogenase: A 1.6 A resolution x-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J. Mol. Biol., 292, 871–891.

    Article  CAS  Google Scholar 

  • Mayer, S. M., Niehaus, W. G., and Dean, D. R. (2002). Reduction of short chain alkynes by a nitrogenase alpha-70Ala-substituted MoFe protein. J. Chem. Soc, Dalton Trans., 5, 802–807.

    Article  Google Scholar 

  • Nicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C, and Peters, J. W. (2000). A novel Fe-S cluster in Fe-only hydrogenases. Trends Biochem. Sci., 25, 138–143.

    Article  CAS  Google Scholar 

  • Nicolet, Y., Piras, C, Legrand, P., Hatchikian, C. E., and Fontecilla-Camps, J. C. (1999). Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Structure Fold Des., 7, 13–23.

    Article  CAS  Google Scholar 

  • Pai, E. F., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W., and Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBOJ., 9, 2351–2359.

    CAS  Google Scholar 

  • Paustian, T. D., Shah, V. K., and Roberts, G. P. (1990). Apodinitrogenase: purification, association w ith a 20-kilodalton pr otein, and ac tivation b y the iro n-molybdenum cofac tor in the absence of di nitrogenase re ductase. Biochem istry, 29, 3515–3522.

    Article  CAS  Google Scholar 

  • Peters, J. W., Fisher, K., and Dean, D. R. (1995). Nitrogenase structure and function: A biochemical-genetic perspective. Annu. Rev. Microbiol., 49, 335–366.

    Article  CAS  Google Scholar 

  • Peters, J. W., Lanzilotta, W. N., Lemon, B. J., and Seefeldt, L. C. (1998). X-ray crystal structure of Fe- only hydrogenase (Cpl) from Clostridiumpasteurianum to 1.8 A resolution. Science, 282, 1853–1858.

    Article  CAS  Google Scholar 

  • Peters, J. W., Stowell, M. H., Soltis, S. M., Finnegan, M. G., Johnson, M. K., and Rees, D. C. (1997). Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry,36, 1181–1187.

    Article  CAS  Google Scholar 

  • Rees, D. C. (2002). Great metalloclusters in enzymology. Annu. Rev. Biochem., 71, 221–246.

    Article  CAS  Google Scholar 

  • Rees, D. C, and Howard, J. B. (1999). Structural bioenergetics and energy transduction mechanisms. J. Mol Biol., 293, 343–350.

    Article  CAS  Google Scholar 

  • Rees, D. C., and Howard, J. B. (2000). Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol., 4, 559–566.

    Article  CAS  Google Scholar 

  • Renner, K. A., and Howard, J. B. (1996). Aluminum fluoride inhibition of nitrogenase: Stabilization of a nucleotide.Fe-protein.MoFe-protein complex. Biochemistry, 35, 5353–5358.

    Article  CAS  Google Scholar 

  • Robinson, A. C., Burgess, B. K., and Dean, D. R. (1986). Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene cluster. J. Bacteriol., 166, 180–186.

    CAS  Google Scholar 

  • Robinson, A. C, Chun, T. W., Li, J. G., and Burgess, B. K. (1989). Iron-molybdenum cofactor insertion into the apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex. J. Biol. Chem., 264, 10088–10095.

    CAS  Google Scholar 

  • Robinson, A. C., Dean, D. R., and Burgess, B. K. (1987). Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J. Biol. Chem., 262, 14327–14332.

    CAS  Google Scholar 

  • Robson, R. L. (1984). Identification of possible adenine nucleotide-binding sites in nitrogenase Fe- and MoFe-proteins by amino acid sequence comparison. FEBSLett., 173, 394–398.

    Article  CAS  Google Scholar 

  • Ryle, M. J., and Seefeldt, L. C. (1996). Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: Formation of a conformation resembling the MgATP-bound state by protein engineering. Biochemistry, 35, 4766–4775.

    Article  CAS  Google Scholar 

  • Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B., and Rees, D. C. (1997). Structure of ADP x AIF4(-)-stabilized nitrogenase complex & implications for signal transduction. Nature, 387, 370–376.

    Article  CAS  Google Scholar 

  • Schlessman, J. L., Woo, D., Joshua-Tor, L., Howard, J. B., and Rees, D. C. (1998). Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. J. Mol Biol., 280, 669–685.

    Article  CAS  Google Scholar 

  • Schmid, B., Ribbe, M. W., Einsle, O., Yoshida, M., Thomas, L. M., Dean, D. R.,et al. (2002). Structure of a cofactor-deficient nitrogenase MoFe protein. Science, 296, 352–356.

    Article  CAS  Google Scholar 

  • Schulz, G. E. (1992). Binding of nucleotides by proteins. Curr. Opin. Struct. Biol., 2, 61–67.

    Article  Google Scholar 

  • Scott, D. J., Dean, D. R., and Newton, W. E. (1992). Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an a-subunit FeMo cofactor-binding domain. J. Biol. Chem., 267, 20002–20010.

    CAS  Google Scholar 

  • Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E., and Dean, D. R. (1990). Role for the nitrogenase MoFe protein a-subunit in FeMo-cofactor binding and catalysis. Nature, 343, 188–190.

    Article  CAS  Google Scholar 

  • Sellmann, D., Fursattel, A., and Sutter, J. (2000). The nitrogenase catalyzed N2 dependent HD formation: a model reaction and its significance for the FeMoco function. Coord. Chem. Rev., 200, 545–561.

    Article  Google Scholar 

  • Sellmann, D., and Sutter, J. (1996). Elementary reactions, structure-function relationships, and the potential relevance of low molecular weight metal-sulfur ligand complexes to biological N2 fixation. J. Biol Inorg. Chem., 1, 587–593.

    Article  CAS  Google Scholar 

  • Siegbahn, P. E. M., Westerberg, J., Svensson, M., and Crabtree, R. H. (1998). Nitrogen fixation by nitrogenases: A quantum chemical study. J. Phys. Chem. B, 102, 1615–1623.

    Article  CAS  Google Scholar 

  • Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994). GTPase mechanism of G proteins from the 1.7 A crystal structure of transducin alpha-GDP-AIF-4. Nature, 372, 276–279.

    Article  CAS  Google Scholar 

  • Story, R. M., and Steitz, T. A. (1992). Structure of the recA-ADP complex. Nature, 355, 374–376.

    Article  CAS  Google Scholar 

  • Story, R. M., Weber, I. T., and Steitz, T. A. (1992). The structure of the E. coli recA protein monomer and polymer. Nature, 355, 318–325.

    Article  CAS  Google Scholar 

  • Thony, B., Kaluza, K., and Hennecke, H. (1985). Structural and functional homology between the a and (3 subunits of the nitrogenase MoFe protein as revealed by sequencing the Rhizobium japonicum nifkgene. Mol Gen. Genet., 198, 441–448.

    Article  CAS  Google Scholar 

  • Tong, L. A., de Vos, A. M., Milburn, M. V., and Kim, S. H. (1991). Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol., 2/7,503–516.

    Article  Google Scholar 

  • Vetter, I. R., and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294, 1299–1304.

    Article  CAS  Google Scholar 

  • Volbeda, A., Charon, M. H., Piras, C, Hatchikian, E. C, Frey, M., and Fontecilla-Camps, J. C. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373, 580–587.

    Article  CAS  Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982). Distantly related sequences in the a-and P-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBOJ., 1, 945–951.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benton, P.M.C., Peters, J.W. (2004). The Structures of The Nitrogenase Proteins and Stabilized Complexes. In: Smith, B.E., Richards, R.L., Newton, W.E. (eds) Catalysts for Nitrogen Fixation. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3611-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3611-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6675-6

  • Online ISBN: 978-1-4020-3611-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics