Skip to main content

Iron-Only Nitrogenase: Exceptional Catalytic, Structural and Spectroscopic Features

  • Chapter
Catalysts for Nitrogen Fixation

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 1))

Abstract

The classical, molybdenum-containing nitrogenase system exists in all diazotrophic microorganisms that have been examined. It was a long-held dogma that Mo is absolutely necessary for nitrogen fixation, however, in 1980, Bishop and coworkers discovered that Azotobacter vinelandii Nif͞ point mutants, which are defective in Mo-nitrogenase synthesis, were able to fix N2 in the absence of molybdenum (Bishop et al., 1980). In 1986, the first Mo-independent “alternative” nitrogenases were isolated from two Azotobacter species, A. vinelandii (Hales et al., 1986) and A. chroococcum (Robson et al., 1986) and both identified as vanadium-containing nitrogenases (V-nitrogenases). It came as an even a greater surprise when, two years later, a second type of alternative nitrogenase, lacking both Mo and V, was isolated from A. vinelandii as well (Chisnell et al., 1988). This last enzyme system has now also been isolated from phototrophic bacteria, e.g., Rhodobacter capsulatus (from a ni/HDK͞ strain) (Schneider et al., 1991) and Rhodospirillum rubrum (from a nifH͞ strain) (Davis et al., 1996). Based on multielement analyses by ICP-MS, the Mo/V-independent nitrogenase from R. capsulatus has been unambiguously identified as an enzyme system that contains only iron but no heterometal atoms (Müller et al., 1993; Schneider et al., 1997); a fact that has led to their designation as either ‘Fe nitrogenase’ or ‘Fe-only nitrogenase’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arber, J. M., Flood, A. C, Garner, C. D., Gormal, C. A., Hasnain, S. S., and Smith, B. E. (1988). Iron K-edge X-ray absorption spectroscopy of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Biochem. J., 252, 421–425.

    CAS  Google Scholar 

  • Bishop, P. E., Jarlenski, D. M. L., and Hetherrington, D. R. (1980) Proc. Natl Acad. Sci. U.S.A., 77, 7342–7346.

    Article  CAS  Google Scholar 

  • Blanchard, C, and Hales, B. J. (1996). Isolation of two forms of the nitrogenase VFe protein from Azotobacter vinelandii. Biochemistry, 55,472–478.

    Article  Google Scholar 

  • Bolin, J. T., Campobasso, N., Muchmore, S. W., Morgan, T. V., and Mortenson, L. E. (1993) Structure and environment of metal clusters in the nitrogenase molybdenum–iron protein from Clostridium pasteurianum. In E. I. Stiefel, D. Coucouvanis, and W. E. Newton (Eds.), Molybdenum enzymes, cofactors, and model systems(pp. 186–195). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Chien, Y.-T., Auerbuch, V., Brabban, A. D., and Zinder, S. H. (2000). Analysis of genes encoding an alternative nitrogenase in the archeon Methanosarcina barkeri 227. J. Bacterioi, 182, 3247–3253.

    Article  CAS  Google Scholar 

  • Chisnell, J.R., Premakumar, R. and Bishop, P.E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J. Bacterioi, 170, 27–33.

    CAS  Google Scholar 

  • Davis, R., Lehmann, L., Petrovich, R., Shah, V. K., Roberts, G. P., and Ludden, P. W. (1996). Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J. Bacterioi, 178, 1445–1450.

    CAS  Google Scholar 

  • Dilworth, M. J., Eady, R. R., and Eldridge, M. E. (1988). The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane. Biochem. J., 249, 745–751.

    CAS  Google Scholar 

  • Dilworth, M. J., Eldridge, M. E., and Eady, R. R. (1993). The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: Effect of elevated temperature on N2 reduction. Biochem. J.,289, 395–400.

    CAS  Google Scholar 

  • Dixon, R., Eady, R. R., Espin, G., Hill, S., Iaccarino, M., and Merrick, M. (1980). Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusions. Nature, 286, 128–132.

    Article  CAS  Google Scholar 

  • Eady, R. R. (1996). Structure–function relationships of alternative nitrogenases. Chem. Rev., 96, 3013–3030.

    Article  CAS  Google Scholar 

  • Eady, R. R., Robson, R. L., Richardson, T. H., Miller, R. W., and Hawkins, M. (1987). The vanadium nitrogenase of Azotobacter chroococcum. Biochem. J., 244, 197–207.

    CAS  Google Scholar 

  • Einsle, O., Tezcan, F. A., Andrade, S. L. A., Schmid, B., Yoshida, M., Howard, J. B., et al.(2002). Nitrogenase MoFe protein at 1.16 A resolution: A central ligand in the FeMo–cofactor. Science, 297, 1696–1700.

    Article  CAS  Google Scholar 

  • Fallik, E., Hartel, P. G., and Robson, R. L. (1993). Presence of vanadium nitrogenase in Azotobacter paspali. Appi Environ. Microbiol., 59, 1883–1886.

    CAS  Google Scholar 

  • Gollan, U., Schneider, K., Müller, A., Schuddekopf, K., and Klipp, W. (1993). Detection of the in vivo incorporation of a metal cluster into a protein. The FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus. Eur. J. Biochem., 215, 25–35.

    Article  CAS  Google Scholar 

  • Hales, B. J. (1990). Alternative nitrogenases. Adv. Inorg. Biochem., 8, 165–198.

    CAS  Google Scholar 

  • Hales, B. J., Case, E. E., Morningstar, J. E., Dzeda, M. F., and Mauterer, L. A. (1986). Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry, 25, 7251–7255.

    Article  CAS  Google Scholar 

  • Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., and Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. J. Bacterioi, 171, 1075–1086.

    CAS  Google Scholar 

  • Joerger, R. D., Loveless, T. M., Pau, R. N., Mitchenall, L.A., Simon, B. H., and Bishop, P. E. (1990). Nucleotide sequence and mutational analysis of the structural genes for nitrogenase 2 of Azotobacter vinelandii. J. Bacterioi,. 172, 3400–3408.

    CAS  Google Scholar 

  • Kennedy, C, and Dean, D. R. (1992). The nifU, nifS and w/Kgene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Moi Gen. Genet., 231, 494–498.

    Article  CAS  Google Scholar 

  • Kim, J., and Rees, D. C. (1992). Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature, 360, 553–560.

    Article  CAS  Google Scholar 

  • Krahn, E., Schneider, K., and Müller, A. (1996). Comparative characterization of H2 production by the conventional Mo nitrogenase and the alternative “iron–only” nitrogenase of Rhodobacter capsulatus hup mutants. Appl. Microbiol. Biotechnol., 46, 285–290.

    Article  CAS  Google Scholar 

  • Krahn, E., Weiss, B. J. R., Krockel, M., Groppe, J., Henkel, G, Cramer, S. P., et al.(2002). The Fe-only nitrogenase from Rhodobacter capsulatus: Identification of the cofactor, an unusual, high-nuclearity iron–sulfür cluster, by Fe /C–edge EXAFS and 57Fe Mossbauer spectroscopy. J. Biol. Inorg. Chem., 7, 37–45.

    Google Scholar 

  • Lanzilotta, W. N., Christiansen, J., Dean, D. R., and Seefeldt, L. C. (1998). Evidence for coupled electron and proton transfer in the [8Fe–7S] cluster of nitrogenase. Biochemistry, 37, 11376–11384.

    Article  CAS  Google Scholar 

  • Lanzilotta, W. N., and Seefeldt, L. C. (1996). Electron transfer from the nitrogenase iron protein to the [8Fe–(7/8)S] clusters of the molybdenum-iron protein. Biochemistry, 35, 16770–16776.

    Article  CAS  Google Scholar 

  • Lehmann, L. J., and Roberts, G. P. (1991). Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J. Bacteriol,. 173, 5705–5711.

    Google Scholar 

  • Loveless, T. M., and Bishop, P. E. (1999). Identification of genes unique to Mo-independent nitrogenase systems in diverse diazotrophs. Can. J. Microbiol, 45, 312–317.

    Article  CAS  Google Scholar 

  • Lowe, D. J., Fisher, K., and Thornley, R. N. F. (1993). Klebsiella pneumoniae nitrogenase: Pre-steady-state absorbance changes show that redox changes occur in the MoFe protein that depend on substrate and component protein ratio; A role for P-centres in reducing dinitrogen? Biochem. J.292, 93–98.

    CAS  Google Scholar 

  • Lowe, D. J., and Smith, B. E. (1985). Electron–paramagnetic–resonance spectroscopy and related techniques in the study of nitrogenase. Biochem. Soc. Trans., 13, 579–581.

    CAS  Google Scholar 

  • Luque, F., and Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet, 227, 481–487.

    Article  CAS  Google Scholar 

  • McLean, P. A., Papaefthymiou, V., Orme-Johnson, W. H., and Miinck, E. (1987). Isotopic hybrids of nitrogenase. Mossbauer study of MoFe protein with selective 57Fe enrichment of the P cluster. J. Biol. Chem., 262, 12900–12903.

    CAS  Google Scholar 

  • Masepohl, B., Krey, R., and Klipp, W. (1993). The draTG gene region of Rhodobacter capsulatus is required for post–translational regulation of both the molybdenum and the alternative nitrogenase. J. Gen. Microbiol, 139, 2667–2675.

    Article  CAS  Google Scholar 

  • Mayer, S. M., Lawson, D. M., Gormal, C. A., Roe, S.M., and Smith, B. E. (1999) New insights into structure-function relationships in nitrogenase: A 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe protein. J. Mol. Biol,. 292, 871–891.

    Article  CAS  Google Scholar 

  • Maynard, R. H., Premakumar, R., and Bishop, P. E. (1994). Mo-independent nitrogenase 3 is advantageous for diazotrophic growth of Azotobacter vinelandii on solid medium containing molybdenum. J. Bacteriol, 176, 5583–5586.

    CAS  Google Scholar 

  • Müller, A., Schneider, K., and Hagen, W. R. (1993). EPR spectroscopic characterization of an ‘iron only’ nitrogenase. S = 3/2 spectrum of component 1 isolated from Rhodobacter capsulatus. FEBS Lett., 303, 36–40.

    Google Scholar 

  • Nagatani, H. H., and Brill, W. J. (1974). The effect of Mo, W and V on the synthesis of nitrogenase components in Azotobacter vinelandii. Biochim. Biophys. Acta, 362, 160–166.

    Article  CAS  Google Scholar 

  • Nyborg, A. C, Johnson, J. L., Gunn, A., and Watt, G. D. (2000). Evidence for a two–electron transfer using the all-ferrous Fe protein during nitrogenase catalysis../. Biol. Chem., 275, 39307–39312.

    Article  CAS  Google Scholar 

  • Orme-Johnson, W.H. (1993). The molybdenum-iron protein of nitrogenase. In E. I. Stiefel, D. Coucouvanis, and W. E. Newton (Eds.), Molybdenum enzymes, cofactors, and model systems (pp.257–270). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Pau, R. N., Eldridge, M. E., Lowe, D. J., Mitchenall, L. A., and Eady, R. R. (1993). Molybdenum-independent nitrogenases of Azotobacter vinelandii: A functional species of alternative nitrogenase-3 isolated from a molybdenum–tolerant strain contains an iron-molybdenum cofactor. Biochem. J., 293, 101–107.

    CAS  Google Scholar 

  • Peters, J. W., Stowell, M. H. B., Soltis, S. M., Finnegan, M. G., Johnson, M. K., and Rees, D. C. (1997). Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry, 36, 1181–1187.

    Article  CAS  Google Scholar 

  • Pierik, A. J., Wassink, H., Haaker, H., and Hagen, W. R. (1993). Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. Eur. J. Biochem., 212, 51–61.

    Article  CAS  Google Scholar 

  • Plass, W. (1994). Electronic structure of the iron–molybdenum and alternative cofactors of nitrogenase: A comparison and its consequences. J. Mol. Struct. (Theochem.), 315, 53–62.

    Article  Google Scholar 

  • Ravi, N., Moore, V., Lloyd, S. G., Hales, B. J., and Huynh, B. H. (1994). Mossbauer characterization of the metal clusters in Azotobacter vinelandii nitrogenase VFe protein. J. Biol. Chem., 269, 20920–20924.

    CAS  Google Scholar 

  • Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 322, 388–390.

    Article  CAS  Google Scholar 

  • Robson, R. L., Woodley, P. R., Pau, R. N., and Eady, R. R. (1989). Structural genes for the vanadium nitrogenase from Azotobacter chroococcum. EMBOJ., 8, 1217–1224.

    CAS  Google Scholar 

  • Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., and Müller, A. (1997). Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Eur. J. Biochem., 244, 789–800.

    Article  CAS  Google Scholar 

  • Schneider, K., Gollan, U., Selsemeier-Voigt, S., Plass, W., and Müller, A. (1994). Rapid purification of the protein components of a highly active “iron only” nitrogenase. Naturwissenschaften, 81, 405–408.

    Article  CAS  Google Scholar 

  • Schneider, K., Müller, A., Johannes, K.-U., Diemann, E., and Kottmann, J. (1991). Selective removal of molybdenum traces from growth media of N2 -fixing bacteria. Anal. Biochem., 193, 292–298.

    Article  CAS  Google Scholar 

  • Schneider, K., Müller, A. Schramm, U., and Klipp, W. (1991). Demonstration of a molybdenum- and vanadium-independent nitrogenase in a //7/A-deletion mutant of Rhodobacter capsulatus. Eur. J. Biochem., 195, 653–661.

    Article  CAS  Google Scholar 

  • Schuddekopf, K., Hennecke, S., Liese, U., Kutsche, M., and Klipp, W. (1993). Characterization of anf genes specific for the alternative nitrogenase and identification of nif genes required for both nitro-genases in Rhodobacter capsulatus. Mol. Microbiol, 8, 673–684.

    Article  CAS  Google Scholar 

  • Shah, V. K., Allen, J. R., Spangler, N. J., and Ludden, P. W. (1994). In vitro synthesis of the iron–molybdenum cofactor of nitrogenase. J. Biol. Chem., 269, 1154–1158.

    CAS  Google Scholar 

  • Siemann, S., Schneider, K., Drottboom, M, and Müller, A. (2002). The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus. A comparative study on the redox properties of the metal clusters present in the dinitrogenase components. Eur. J. Biochem., 269, 1650–1661.

    Article  CAS  Google Scholar 

  • Smith, B. E. (1999). Structure, function, and biosynthesis of the metallosulfür clusters in nitrogenases. Adv. Inorg. Chem., 47, 159–218.

    Article  CAS  Google Scholar 

  • Smith, B. E., Lowe, D. J., and Bray, R. C. (1973). Studies by electron paramagnetic resonance on the catalytic mechanism of nitrogenase of Klebsiella pneumoniae. Biochem. J., 135, 331–341.

    CAS  Google Scholar 

  • Thiel, T. (1993). Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J. Bacterioi, 175, 6276–6286.

    CAS  Google Scholar 

  • Tittsworth, R. C, and Hales, B. J. (1993). Detection of EPR signals assigned to the 1-equivalent-oxidized P-clusters of the nitrogenase MoFe protein from Azotobacter vinelandii. J. Am. Chem. Soc, 115, 9763–9767.

    Article  CAS  Google Scholar 

  • Tittsworth, R. C, and Hales, B. J. (1996). Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: An example of redox–gated electron flow. Biochemistry, 35, 479–487.

    Article  CAS  Google Scholar 

  • Walmsley, J., and Kennedy, C. (1991). Temperature-dependent regulation by molybdenum and vanadium of expression of the structural genes encoding three nitrogenases in Azotobacter vinelandii. Appl. Environ. Microbiol, 57, 622–624.

    CAS  Google Scholar 

  • Wang, G., AngerMüller, S., and Klipp, W. (1993). Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin–binding proteins. J. Bacterioi, 775,3031–3042.

    Google Scholar 

  • Waugh, S. I., Paulsen, D. M., Mylona, P. V., Maynard, R. H., Premakumar, R., and Bishop, P. E. (1995). The genes encoding the delta subunits of dinitrogenase 2 and 3 are required for Mo-independent diazotrophic growth by Azotobacter vinelandii. J. Bacterioi, 177, 1505–1510.

    Google Scholar 

  • Yoo, S. J., Angove, H. C, Burgess, B. K., Hendrich, M. P., and Munck, E. (1999) Mossbauer and integer–spin EPR studies and spin–coupling analysis of the [Fe4S4]0 cluster of the Fe protein from Azotobacter vinelandii nitrogenase. J. Am. Chem. Soc, 121, 2534–2545.

    Article  CAS  Google Scholar 

  • Zioni, F., Robson, R. M., and Robson, R. L. (1993). Organization of potential alternative nitrogenase genes from Clostridium pasteurianum. Biochim. Biophys. Acta, 1174, 83–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schneider, K., Müller, A. (2004). Iron-Only Nitrogenase: Exceptional Catalytic, Structural and Spectroscopic Features. In: Smith, B.E., Richards, R.L., Newton, W.E. (eds) Catalysts for Nitrogen Fixation. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3611-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3611-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6675-6

  • Online ISBN: 978-1-4020-3611-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics