Physiology Of Root-Nodule Bacteria

  • P. S. Poole
  • M. F. Hynes
  • A. W. B. Johnston
  • R. P. Tiwari
  • W. G. Reeve
  • J. A. Downie
Part of the Nitrogen Fixation: Origins, Applications, and Research Progress book series (NITR, volume 7)


Glycine Betaine Acid Tolerance Rhizobium Leguminosarum Bradyrhizobium Japonicum Infection Thread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar, J. M. M., Ashby, A. M., Richards, A. J. M., Loake, G. J., Watson, M. D., and Shaw, C. H. (1988). Chemotaxis of Rhizobium leguminosarumbiovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol., 134, 2741-2746.Google Scholar
  2. Alexandre, G., and Zhulin, I. B. (2001). More than one way to sense chemicals. J. Bacteriol., 183, 4681-4686.PubMedGoogle Scholar
  3. Alexandre, G., Greer-Phillips, S., and Zhulin, I. B. (2004). Ecological role of energy taxis in microorganisms. FEMS Microbiol. Rev., 28, 113-126.PubMedGoogle Scholar
  4. Alfano, J. R., and Kahn, M. L. (1993). Isolation and characterization of a gene coding for a novel aspartate aminotransferase from Rhizobium meliloti. J. Bacteriol., 175, 4186-4196.PubMedGoogle Scholar
  5. Allaway, D., Lodwig, E., Crompton, L. A., Wood, M., Parsons, R., et al. (2000). Identification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids. Mol. Microbiol., 36, 508-515.PubMedGoogle Scholar
  6. Allaway, D., Schofield, N. A., Leonard, M. E., Gilardoni, L., Finan, T. M., and Poole, P. S. (2001). Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ. Microbiol., 3, 397-406.PubMedGoogle Scholar
  7. Ames, P., and Bergman, K. (1981). Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J. Bacteriol., 148, 728-729.PubMedGoogle Scholar
  8. Ampe, F., Kiss, E., Sabourdy, F., and Batut, J. (2003a). Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol., 4, R15.Google Scholar
  9. An, J. H., Lee, H. Y., Ko, K. N., Kim, E. S., and Kim, Y. S. (2002). Symbiotic effects of Delta matB Rhizobium leguminosarum bv. trifolii mutant on clovers. Mol.Cells, 14, 261-266.Google Scholar
  10. Andrews, S. C., Robinson, A. K., and Rodriguez-Quinones, F. (2003). Bacterial iron homeostasis. FEMS Microbiol. Rev., 27, 215-237.PubMedGoogle Scholar
  11. Aneja, P., and Charles, T. C. (1999). Poly-3-hydroxybutyrate degradation inRhizobium (Sinorhizobium) meliloti: Isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J. Bacteriol., 181, 849-857.Google Scholar
  12. Appels, M. A., and Haaker, H. (1991). Glutamate oxaloacetate transaminase in pea root nodules - participation in a malate/aspartate shuttle between plant and bacteroid. Plant Physiol., 95, 740-747.PubMedGoogle Scholar
  13. Armitage, J. P., Gallagher, A., and Johnston, A. W. B. (1988). Comparison of the chemotactic behavior of Rhizobium leguminosarum with and without the nodulation plasmid. Mol. Microbiol., 2, 743-748.PubMedGoogle Scholar
  14. Armitage, J. P., and Schmitt, R. (1997). Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti - variations on a theme? Microbiology, 143, 3671-3682.PubMedGoogle Scholar
  15. Asha, H., and Gowrishankar, J. (1993). Regulation of kdp operon expression in Escherichia coli: evidence against turgor as signal for transcriptional control. J. Bacteriol., 175, 4528-4537.PubMedGoogle Scholar
  16. Baginsky, C., Brito, B., Imperial, J., Palacios, J. M., and Ruiz-Argüeso, T. (2002). Diversity and evolution of hydrogenase systems in rhizobia. Appl. Environ. Microbiol., 68, 4915-4924.PubMedGoogle Scholar
  17. Bahar, M., de Majnik, J., Wexler, M., Fry, J., Poole, P. S., and Murphy, P. J. (1998). A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway. Mol. Plant-Microbe Interact., 11, 1057-1068.PubMedGoogle Scholar
  18. Ballen, K. G., Graham, P. H., Jones, R. K., and Bowers, J. H. (1998). Acidity and calcium interaction affecting cell envelope stability in Rhizobium. Can. J. Microbiol., 44, 582-587.Google Scholar
  19. Barker, M. M., Gaal, T., and Gourse, R. L. (2001a). Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J. Mol. Biol., 305, 689-702.Google Scholar
  20. Barker, M. M., Gaal, T., Josaitis, C. A., and Gourse, R. L. (2001b). Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol., 305, 673-688.Google Scholar
  21. Barloy-Hubler, F., Chéron, A., Hellégouarch, A., and Galibert, F. (2004). Smc01944, a secreted peroxidase induced by oxidative stresses in Sinorhizobium meliloti1021. Microbiology, 150, 657-664.PubMedGoogle Scholar
  22. Barnett, M. J., Tolman, C. J., Fisher, R. F., and Long, S. R. (2004). A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc. Natl. Acad. Sci. USA, 101, 16636-16641.PubMedGoogle Scholar
  23. Batut, J., Andersson, S. G. E., and O’Callaghan, D. (2004). The evolution of chronic infection strategies in the α -proteobacteria. Nature Revs. Microbiol., 2, 933-945.Google Scholar
  24. Becana, M., Dalton, D. A., Moran, J. F., Iturbe-Ormaetxe, I., Matamoros, M. A., and Rubio, M. C. (2000). Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant., 109, 372-381.Google Scholar
  25. Becker, A., Bergès, H., Krol, E., Bruand, C., Rüberg, S., Capela, D., et al. (2004). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol. Plant-Microbe Interact., 17, 292-303.PubMedGoogle Scholar
  26. Belitsky, B., and Kari, C. (1982). Absence of accumulation of ppGpp and RNA during amino acid starvation in Rhizobium meliloti. J. Biol. Chem., 257, 4677-4679.PubMedGoogle Scholar
  27. Bell, E. A. (2003). Nonprotein amino acids of plants: Significance in medicine, nutrition, and agriculture. J. Agric. Food Chem., 51, 2854-2865.PubMedGoogle Scholar
  28. Benson, H. P., LeVier, K., and Guerinot, M. L. (2004). A dominant-negative fur mutation in Bradyrhizobium japonicum. J. Bacteriol., 186, 1409-1414.PubMedGoogle Scholar
  29. Bergersen, F. J., and Turner, G. L. (1990). Bacteroids from soybean root nodules: Accumulation of poly-β -hydroxybutyrate during supply of malate and succinate in relation to N2 fixation in flow-chamber reactions. Proc. Roy. Soc. London,B, 240, 39-59.Google Scholar
  30. Bergersen, F. J., Peoples, M. B., and Turner, G. L. (1991). A role for poly-β -hydroxybutyrate in bacteroids of soybean root nodules. Proc. Roy. Soc. London,B, 245, 59-64.Google Scholar
  31. Bergersen, F. J., and Turner, G. L. (1993). Effects of concentrations of substrates supplied to N2-fixing soybean bacteroids in flow chamber reactions. Proc. Roy. Soc. London,B, 251, 95-102.Google Scholar
  32. Boivin, C., Camut, S., Malpica, C. A., Truchet, G., and Rosenberg, C. (1990). Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell, 2, 1157-1170.PubMedGoogle Scholar
  33. Boivin, C., Barran, L. R., Malpica, C. A., and Rosenberg, C. (1991). Genetic analysis of a region of theRhizobium meliloti pSym plasmid specifying catabolism of trigonelline, a secondary metabolite present in legumes. J. Bacteriol., 173, 2809-2817.PubMedGoogle Scholar
  34. Boncompagni, E., Dupont, L., Mignot, T., Østeräs, M., Lambert, A., Poggi, M. C., and Le Rudulier, D. (2000). Characterization of a Sinorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. J. Bacteriol., 182, 3717-3725.PubMedGoogle Scholar
  35. Booth, I. R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiol. Revs., 49, 359-378.Google Scholar
  36. Borthakur, D., Soedarjo, M., Fox, P. M., and Webb, D. T. (2003). The mid genes of Rhizobium sp strain TAL1145 are required for degradation of mimosine into 3-hydroxy-4-pyridone and are inducible by mimosine. Microbiology, 149, 537-546.PubMedGoogle Scholar
  37. Boussau, B., Karlberg, E. O., Frank, A. C., Legault, B.-A., and Anderson, S. G. E. (2004). Computational inferences of scenarios for α -proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA, 101, 9722-9727.PubMedGoogle Scholar
  38. Bowra, B. J., and Dilworth, M. J. (1981). Motility and chemotaxis towards sugars in Rhizobium leguminosarum. J. Gen. Microbiol., 126, 231-235.Google Scholar
  39. Bravo, A., and Mora, J. (1988). Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J. Bacteriol., 170, 980-984.PubMedGoogle Scholar
  40. Breedveld, M. W., Zevenhuizen, L. P., and Zehnder, A. J. (1990). Excessive excretion of cyclic beta-(1,2)-glucan by Rhizobium trifolii TA-1. Appl. Environ. Microbiol., 56, 2080-2086.PubMedGoogle Scholar
  41. Breedveld, M. W., and Miller, K. J. (1994). Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol. Rev., 58, 145-161.PubMedGoogle Scholar
  42. Bren, A., and Eisenbach, M. (2000). How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation. J. Bacteriol., 182, 6865-6873.PubMedGoogle Scholar
  43. Brewin, N. J. (1991). Developement of the legume root nodule. Annu. Rev. Cell Biol., 7, 191-226.PubMedGoogle Scholar
  44. Bringhurst, R. M., Cardon, Z. G., and Gage, D. J. (2001). Galactosides in the rhizosphere: Utilization by Sinorhizobium meliloti and development of a biosensor. Proc. Natl. Acad. Sci. USA, 98, 4540-4545.PubMedGoogle Scholar
  45. Bringhurst, R. M., and Gage, D. J. (2002). Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J. Bacteriol., 184, 5385-5392.PubMedGoogle Scholar
  46. Brom, S., Garcia-de los Santos, A., Stepkowsky, T., Flores, M., Davila, G., Romero, D., and Palacios, R. (1992). Different plasmids of Rhizobium leguminosarum bv phaseoli are required for optimal symbiotic performance. J. Bacteriol., 174, 5183-5189.PubMedGoogle Scholar
  47. Brom, S., Garcia-de los Santos, A., Cervantes, L., Palacios, R., and Romero, D. (2000). In Rhizobium etli, symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid, 44, 34-43.PubMedGoogle Scholar
  48. Burnet, M. W., Goldmann, A., Message, B., Drong, R., El Amrani, A., et al. (2000). The stachydrine catabolism region in Sinorhizobium melilotiencodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Gene, 244, 151-161.PubMedGoogle Scholar
  49. Caetano-Anolles, G., Wall, L. G., De-Micheli, A. T., Macchi, E. M., Bauer, W. D., and Favelukes, G. (1988). Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol., 86, 1228-1235.PubMedGoogle Scholar
  50. Carlson, T. A., Martin, G. B., and Chelm, B. K. (1987). Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. J. Bacteriol., 169, 5861-5866.PubMedGoogle Scholar
  51. Cashel, M., Gentry, D. R., Hernandez, V. J., and Vinella, D. (1996). The stringent response. In F. C. C. E. Neidhardt (Ed.), Escherichia coliandSalmonellacellular and molecular biology. (pp. 1458-1496). Washington, D.C.: ASM Press.Google Scholar
  52. Castillo, A., Taboada, H., Mendoza, A., Valderrama, B., Encarnación, S., and Mora, J. (2000). Role of GOGAT in carbon and nitrogen partitioning in Rhizobium etli. Microbiology, 146, 1627-1637.PubMedGoogle Scholar
  53. Cevallos, M. A., Encarnacion, S., Leija, A., Mora, Y., and Mora, J. (1996). Genetic and physiological characterization of aRhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J. Bacteriol., 178, 1646-1654.PubMedGoogle Scholar
  54. Chao, T. C., Becker, A., Buhrmester, J., Pühler, A., and Weidner, S. (2004). The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. J. Bacteriol., 186, 3609-3620.PubMedGoogle Scholar
  55. Charles, T. C., Cai, G. Q., and Aneja, P. (1997). Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium (Sinorhizobium) meliloti. Genetics, 146, 1211-1220.PubMedGoogle Scholar
  56. Charles, T. C., and Aneja, P. (1999). Methylmalonyl-CoA mutase encoding gene of Sinorhizobium meliloti. Gene, 226, 121-127.PubMedGoogle Scholar
  57. Chen, F., Okabe, Y., Osano, K., and Tajima, S. (1997). Purification and characterization of the NADP-malic enzyme from Bradyrhizobium japonicum A1017. Biosci. Biotech. Biochem., 61, 384-386.Google Scholar
  58. Chen, F., Okabe, Y., Osano, K., and Tajima, S. (1998). Purification and characterization of an NAD-malic enzyme from Bradyrhizobium japonicumA1017. Appl. Environ. Microbiol., 64, 4073-4075.PubMedGoogle Scholar
  59. Copeland, L., Quinnell, R. G., and Day, D. A. (1989). Malic enzyme activity in bacteroids from soybean nodules. J. Gen. Microbiol., 135, 2005-2011.Google Scholar
  60. Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev., 53, 121-147.PubMedGoogle Scholar
  61. Cubo, T., Economou, A., Murphy, G., Johnston, A. W. B., and Downie, J. A. (1992). Molecular characterisation and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum bv viciae. J. Bacteriol., 174, 4026-4035.PubMedGoogle Scholar
  62. Daniels, R., De Vos, D. E., Desair, J., Raedschelders, G., Luyten, E., Rosemeyer, V., et al. (2002). The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J. Biol. Chem., 277, 462-468.PubMedGoogle Scholar
  63. Daniels, R., Vanderleyden, J., and Michiels, J. (2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev., 28, 261-289.PubMedGoogle Scholar
  64. Danino, V. E., Wilkinson, A., Edwards, A., and Downie, J. A. (2003). Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum- sensing relay. Mol. Microbiol., 50, 511-525.PubMedGoogle Scholar
  65. Dardanelli, M. S., González, P. S., Bueno, M. A., and Ghittoni, N. E. (2000). Synthesis, accumulation and hydrolysis of trehalose during growth of peanut rhizobia in hyperosmotic media. J. Basic Microbiol., 40, 149-156.PubMedGoogle Scholar
  66. Davey, M. E., and de Bruijn, F. J. (2000). A homologue of the tryptophan-rich sensory protein TspO and FixL regulate a novel nutrient deprivation-induced Sinorhizobium meliloti locus. Appl. Environ. Microbiol., 66, 5353-5359.PubMedGoogle Scholar
  67. Day, D. A., Kaiser, B. N., Thomson, R., Udvardi, M. K., Moreau, S., and Puppo, A. (2001). Nutrient transport across symbiotic membranes from legume nodules. Aust. J. Plant Physiol., 28, 667-674.Google Scholar
  68. Deakin, W. J., Parker, V. E., Wright, E. L., Ashcroft, K. J., Loake, G. J., and Shaw, C. H. (1999). Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology, 145, 1397-1407.PubMedGoogle Scholar
  69. Del Bel, K. L. (2004).Genetic regulation of chemotaxis and motility in Rhizobium leguminosarum. Ph.D. thesis, University of Calgary, Canada.Google Scholar
  70. del Papa, M. F., Balagué, L. J., Sowinski, S. C., Wegener, C., Segundo, E., Abarca, F. M., et al. (1999). Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central Argentina and Uruguay. Appl. Environ. Microbiol., 65, 1420-1427.PubMedGoogle Scholar
  71. Dharmatilake, A. J., and Bauer, W. D. (1992). Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol., 58, 1153-1158.PubMedGoogle Scholar
  72. Díaz-Mireles, E., Wexler, M., Sawers, G., Bellini, D., Todd, J. D., and Johnston, A. W. B. (2004). The Fur-like protein Mur of Rhizobium leguminosarum is a Mn2 +-responsive transcriptional regulator. Microbiology, 150, 1447-1456.PubMedGoogle Scholar
  73. Dilworth, M. J., Tiwari, R. P., Reeve, W. G., and Glenn, A. R. (2000). Legume root nodule bacteria and acid pH. Sci. Prog., 83, 357-389.PubMedGoogle Scholar
  74. Djordjevic, M. A., Chen, H. C., Natera, S., Van Noorden, G., Menzel, C., Taylor, S., et al. (2003). A global analysis of protein expression profiles in Sinorhizobium meliloti: Discovery of new genes for nodule occupancy and stress adaptation. Mol. Plant-Microbe Interact., 16, 508-524.PubMedGoogle Scholar
  75. Dombrecht, B., Heusdens, C., Beullens, S., Verreth, C., Mulkers, E., Proost, P., et al. (2005). Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol. Microbiol., 55, 1207-1221.PubMedGoogle Scholar
  76. Driscoll, B. T., and Finan, T. M. (1993). NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol. Microbiol., 7, 865-873.PubMedGoogle Scholar
  77. Driscoll, B. T., and Finan, T. M. (1996). NADP+-dependent malic enzyme of Rhizobium meliloti. J. Bacteriol., 178, 2224-2231.PubMedGoogle Scholar
  78. Driscoll, B. T., and Finan, T. M. (1997). Properties of NAD+- and NADP+-dependent malic enzymes of Rhizobium (Sinorhizobium)meliloti and differential expression of their genes in nitrogen-fixing bacteroids. Microbiology, 143, 489-498.PubMedGoogle Scholar
  79. Duncan, M. J., and Fraenkel, D. G. (1979). α -Ketoglutarate dehydogenase mutant of Rhizobium meliloti. J. Bacteriol., 137, 415-419.PubMedGoogle Scholar
  80. Dunn, M. F. (1998). Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia. FEMS Microbiol.Rev., 22, 105-123.PubMedGoogle Scholar
  81. Dunn, S. D., and Klucas, R. V. (1973). Studies on possible routes of ammonium assimilation in soybean root nodule bacteroids. Can. J. Microbiol., 19, 1493-1499.PubMedGoogle Scholar
  82. Duran, S., and Calderon, J. (1995). Role of the glutamine transaminase-ω -amidase pathway and glutaminase in glutamine degradation in Rhizobium etli. Microbiology, 141, 589-595.Google Scholar
  83. Duran, S., Du Pont, G., Huerta-Zepeda, A., and Calderon, J. (1995). The role of glutaminase in Rhizobium etli: Studies with a new mutant. Microbiology, 141, 2883-2889.PubMedGoogle Scholar
  84. Dymov, S. I., Meek, D. J. J., Steven, B., and Driscoll, B. T. (2004). Insertion of transpoon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes. Mol. Plant-Microbe Interact., 17, 1318-1327.PubMedGoogle Scholar
  85. Eggenhofer, E., Haslbeck, M., and Scharf, B. (2004). MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti. Mol. Microbiol., 52, 701-712.PubMedGoogle Scholar
  86. Encarnacion, S., Calderon, J., Gelbard, A. S., Cooper, A. J. L., and Mora, J. (1998). Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti. Microbiology, 144, 2629-2638.PubMedGoogle Scholar
  87. Endley, S., McMurray, D., and Ficht, T. A. (2001). Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J. Bacteriol., 183, 2454-2462.PubMedGoogle Scholar
  88. Entcheva, P., Phillips, D. A., and Streit, W. R. (2002). Functional analysis of Sinorhizobium meliloti genes involved in biotin synthesis and transport. Appl. Environ. Microbiol., 68, 2843-2848.PubMedGoogle Scholar
  89. Fenner, B. J., Tiwari, R. P., Reeve, W. G., Dilworth, M. J., and Glenn, A. R. (2004). Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol. Lett., 236, 21-31.PubMedGoogle Scholar
  90. Ferguson, G. P., Roop, 2nd, R. M., and Walker, G. C. (2002). Deficiency of a Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope. J. Bacteriol., 184, 5625-5632.PubMedGoogle Scholar
  91. Ferguson, G. P., Datta, A., Baumgartner, J., Roop, R. M., Carlson, R. W., and Walker, G. C. (2004). Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Natl. Acad. Sci. USA, 101, 5012-5017.PubMedGoogle Scholar
  92. Ferraioli, S., Taté, R., Cermola, M., Favre, R., Iaccarino, M., and Patriarca, E. J. (2002). Auxotrophic mutant strains of Rhizobium etli reveal new nodule development phenotypes. Mol. Plant-Microbe Interact., 15, 501-510.PubMedGoogle Scholar
  93. Fischer, H. M., Babst, M., Kaspar, T., Acuna, G., Arigoni, F., and Hennecke, H. (1993). One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J., 12, 2901-2912.PubMedGoogle Scholar
  94. Fitzmaurice, A. M., and O’Gara, F. (1991). Glutamate catabolism in Rhizobium meliloti. Arch. Microbiol., 155, 422-427.Google Scholar
  95. Fitzmaurice, A. M., and O’Gara, F. (1993). A Rhizobium meliloti mutant, lacking a functional γ - aminobutyrate (GABA) bypass, is defective in glutamate catabolism and symbiotic nitrogen fixation. FEMS Microbiol. Lett., 109, 195-202.Google Scholar
  96. Friedman, Y. E., and O’Brian, M. R. (2003). A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum. J. Biol. Chem., 278, 38395-38401.PubMedGoogle Scholar
  97. Friedman, Y. E., and O’Brian, M. R. (2004). The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicumis an iron-responsive transcriptional repressor in vitro. J. Biol. Chem., 279, 32100-32105.PubMedGoogle Scholar
  98. Fry, J., Wood, M., and Poole, P. S. (2001). Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv.viciae and its effect on nodulation competitiveness. Mol. Plant-Microbe Interact., 14, 1016-1025.PubMedGoogle Scholar
  99. Fuhrer, T., Fischer, E., and Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol., 187, 1581-1590.PubMedGoogle Scholar
  100. Gage, D. J. (2002). Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J. Bacteriol., 184, 7042-7046.PubMedGoogle Scholar
  101. Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev., 68, 280-300.PubMedGoogle Scholar
  102. Gage, D. J., Bobo, T., and Long, S. R. (1996). Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J. Bacteriol., 178, 7159-7166.PubMedGoogle Scholar
  103. Gage, D. J., and Long, S. R. (1998). α -Galactoside uptake in Rhizobium meliloti: Isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J. Bacteriol., 180, 5739-5748.PubMedGoogle Scholar
  104. Gage, D. J., and Margolin, W. (2000). Hanging by a thread: Invasion of legume plants by rhizobia. Curr. Opin. Microbiol., 3, 613-617.PubMedGoogle Scholar
  105. Galbraith, M. P., Feng, S. F., Borneman, J., Triplett, E. W., de Bruijn, F. J., and Rossbach, S. (1998). A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology, 144, 2915-2924.PubMedGoogle Scholar
  106. Galibert, F., Finan, T. M., Long, S. R., Pühler, A., Abola, P., Ampe, F., et al. (2001). The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 293, 668-672.PubMedGoogle Scholar
  107. Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T. M., and Thomas-Oates, J. E. (1999). The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol. Microbiol., 32, 63-73.PubMedGoogle Scholar
  108. Giraud, E., Hannibal, L., Fardoux, J., Verméglio, A., and Dreyfus, B. (2000). Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc. Natl. Acad. Sci. USA, 97, 14795-14800.PubMedGoogle Scholar
  109. Giraud, E., and Fleischman, D. (2004). Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynth. Res., 82, 115-130.PubMedGoogle Scholar
  110. Glenn, A. R., and Dilworth, M. J. (1981). The uptake and hydrolysis of disaccharides by fast- and slow-growing species of Rhizobium. Arch. Microbiol., 129, 233-239.Google Scholar
  111. Glenn, A. R., McKay, I. A., Arwas, R., and Dilworth, M. J. (1984). Sugar metabolism and the symbiotic properties of carbohydrate mutants of Rhizobium leguminosarum. J. Gen. Microbiol., 130, 239-245.Google Scholar
  112. Glenn, A. R., Reeve, W. G., Tiwari, R. P., and Dilworth, M. J. (1999). Acid tolerance in root nodule bacteria. Novartis Found. Symp., 221, 112-126.PubMedGoogle Scholar
  113. Goldmann, A., Boivin, C., Fleury, V., Message, B., Lecoeur, L., Maille, M., and Tepfer, D. (1991). Betaine use by rhizosphere bacteria - genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol. Plant-Microbe Interact., 4, 571-578.PubMedGoogle Scholar
  114. González, J. E., and Marketon, M. M. (2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev., 67, 574-592.PubMedGoogle Scholar
  115. Gordon, D. M., Ryder, M. H., Heinrich, K., and Murphy, P. J. (1996). An experimental test of the rhizopine concept in Rhizobium meliloti. Appl. Environ. Microbiol., 62, 3991-3996.PubMedGoogle Scholar
  116. Gotz, R., Limmer, N., Ober, K., and Schmitt, R. (1982). Motility and chemotaxis in 2 strains of Rhizobium with complex flagella. J. Gen. Microbiol., 128, 789-798.Google Scholar
  117. Gotz, R., and Schmitt, R. (1987). Rhizobium meliloti swims by unidirectional, intermittent rotation of right-handed flagellar helices. J. Bacteriol., 169, 3146-3150.PubMedGoogle Scholar
  118. Gouffi, K., Pichereau, V., Rolland, J. P., Thomas, D., Bernard, T., and Blanco, C. (1998). Sucrose is a nonaccumulated osmoprotectant in Sinorhizobium meliloti. J. Bacteriol., 180, 5044-5051.PubMedGoogle Scholar
  119. Gouffi, K., Pica, N., Pichereau, V., and Blanco, C. (1999). Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl. Environ. Microbiol., 65, 1491-1500.PubMedGoogle Scholar
  120. Graham, P. H., and Parker, C. A. (1964). Diagnostic features in the characterisation of the root-nodule bacteria of legumes. Plant Soil, 20, 383-396.Google Scholar
  121. Graham, P. H., Draeger, K. J., Ferrey, M. L., Conroy, M. J., Hammer, B. E., et al. (1994). Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol., 40, 198-207.Google Scholar
  122. Gray, K. M., Pearson, J. P., Downie, J. A., Boboye, B. E., and Greenberg, E. P. (1996). Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum - autoinduction of a stationary- phase and rhizosphere-expressed genes. J. Bacteriol., 178, 372-376.PubMedGoogle Scholar
  123. Green, L. S., and Emerich, D. W. (1997a). The formation of nitrogen-fixing bacteroids is delayed but not abolished in soybean infected by an alpha-ketoglutarate dehydrogenase-deficient mutant of Bradyrhizobium japonicum. Plant Physiol., 114, 1359-1368.Google Scholar
  124. Green, L. S., and Emerich, D. W. (1997b). Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate. J. Bacteriol., 179, 194-201.Google Scholar
  125. Green, L. S., and Emerich, D. W. (1999). Light microscopy of early stages in the symbiosis of soybean with a delayed-nodulation mutant of Bradyrhizobium japonicum. J. Exp. Bot., 50, 1577-1585.Google Scholar
  126. Green, L. S., Li, Y. Z., Emerich, D. W., Bergersen, F. J., and Day, D. A. (2000). Catabolism of α -ketoglutarate by a sucAmutant of Bradyrhizobium japonicum: Evidence for an alternative tricarboxylic acid cycle. J. Bacteriol., 182, 2838-2844.PubMedGoogle Scholar
  127. Green, L. S., Waters, J. K., Ko, S., and Emerich, D. W. (2003). Comparative analysis of the Bradyrhizobium japonicum sucA region. Can. J. Microbiol., 49, 237-243.PubMedGoogle Scholar
  128. Gulash, M., Ames, P., Larosiliere, R. C., and Bergman, K. (1984). Rhizobia are attracted to localized sites on legume roots. Appl. Environ. Microbiol., 48, 149-152.PubMedGoogle Scholar
  129. Guntli, D., Heeb, M., Mo¸nne-Loccoz, Y., and Défago, G. (1999). Contribution of calystegine catabolic plasmid to competitive colonization of the rhizosphere of calystegine-producing plants by Sinorhizobium meliloti Rm41. Mol. Ecol., 8, 855-863.Google Scholar
  130. Hamza, I., Chauhan, S., Hassett, R., and O’Brian, M. R. (1998). The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J. Biol. Chem., 273, 21669-21674.PubMedGoogle Scholar
  131. Hamza, I., Hassett, R., and O’Brian, M. R. (1999). Identification of a functional fur gene in Bradyrhizobium japonicum. J. Bacteriol., 181, 5843-5846.PubMedGoogle Scholar
  132. Hamza, I., Qi, Z. H., King, N. D., and O’Brian, M. R. (2000). Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum. Microbiology, 146, 669-676.PubMedGoogle Scholar
  133. Hauwaerts, D., Alexandre, G., Das, S. K., Vanderleyden, J., and Zhulin, I. B. (2002). A major chemotaxis gene cluster inAzospirillum brasilense and relationships between chemotaxis operons in alpha-proteobacteria. FEMS Micrbiol. Lett., 208, 61-67.Google Scholar
  134. He, X. S., Chang, W., Pierce, D. L., Seib, L. O., Wagner, J., and Fuqua, C. (2003). Quorum sensing inRhizobiumsp strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J. Bacteriol., 185, 809-822.PubMedGoogle Scholar
  135. Heinrich, K., Gordon, D. M., Ryder, M. H., and Murphy, P. J. (1999). A rhizopine strain of Sinorhizobium meliloti remains at a competitive nodulation advantage after an extended period in the soil. Soil Biol. Biochem., 31, 1063-1065.Google Scholar
  136. Heinrich, K., Ryder, M. H., and Murphy, P. J. (2001). Early production of rhizopine in nodules induced by Sinorhizobium melilotistrain L5-30. Can. J. Microbiol., 47, 165-171.PubMedGoogle Scholar
  137. Hernandez-Lucas, I., Pardo, M. A., Segovia, L., Miranda, J., and Martinez-Romero, E. (1995). Rhizobium tropici chromosomal citrate synthase gene. Appl. Environ. Microbiol., 61, 3992-3997.PubMedGoogle Scholar
  138. Herrada, G., Puppo, A., and Rigaud, J. (1989). Uptake of metabolites by bacteroid-containing vesicles and by free bacteroids from french bean nodules. J. Gen. Microbiol., 135, 3165-3177.Google Scholar
  139. Hirsch, P. R. (1979). Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J. Gen. Microbiol., 113, 219-228.Google Scholar
  140. Hoang, H. H., Becker, A., and Gonzalez, J. E. (2004). The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J. Bacteriol., 186, 5460-5472.PubMedGoogle Scholar
  141. Hoelzle, I., and Streeter, J. G. (1989). Higher trehalose accumulation in rhizobia under salt stress. Plant Physiol., S89, 118.Google Scholar
  142. Hosie, A. H. F., Allaway, D., Jones, M. A., Walshaw, D. L., Johnston, A.W. B., and Poole, P. S. (2001). Solute-binding protein-dependent ABC transporters are responsible for solute efflux in addition to solute uptake. Mol. Microbiol., 40, 1449-1459.PubMedGoogle Scholar
  143. Hosie, A. H. F., Allaway, D., and Poole, P. S. (2002). A monocarboxylate permease of Rhizobium leguminosarum is the first member of a new subfamily of transporters. J. Bacteriol., 184, 5436-5448.PubMedGoogle Scholar
  144. Howieson, J. G., and Ewing, M. A. (1986). Acid-tolerance in the Rhizobium meliloti-Medicago symbiosis. Aust. J. Agric. Res., 37, 55-64.Google Scholar
  145. Howieson, J. G., Ewing, M. A., and D’Antuono, M. F. (1988). Selection for acid-tolerance in Rhizobium meliloti. Plant Soil, 105, 179-188.Google Scholar
  146. Howieson, J. G., Robson, A. D., and Abbott, L. K. (1992). Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Aust. J. Agric. Res., 43, 765-772.Google Scholar
  147. Howorth, S. M., and England, R. R. (1999). Accumulation of ppGpp in symbiotic and free-living nitrogen-fixing bacteria following amino acid starvation. Arch. Microbiol., 171, 131-134.PubMedGoogle Scholar
  148. Hynes, M. F., and McGregor, N. F. (1990). Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol. Microbiol., 4, 567-574.PubMedGoogle Scholar
  149. Hynes, M. F., and O’Connell, M. P. (1990). Host plant effect on competition among strains ofRhizobium leguminosarum. Can. J. Microbiol., 36, 864-869.Google Scholar
  150. Ielpi, L., Dylan, T., Ditta, G. S., Helinski, D. R., and Stanfield, S. W. (1990). The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta-(1,2)-glucan. J. Biol. Chem., 265, 2843-2851.PubMedGoogle Scholar
  151. Jamet, A., Sigaud, S., Van de Sype, G., Puppo, A., and Hérouart, D. (2003). Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol. Plant-Microbe Interact., 16, 217-225.PubMedGoogle Scholar
  152. Jamet, A., Kiss, E., Batut, J., .Puppo, A., and Hérouart, D. (2005). The katA catalase gene is regulated by OxyR in both free-living and symbiotic Sinorhizobium meliloti. J. Bacteriol., 187, 376-381.PubMedGoogle Scholar
  153. Jelesko, J. G., and Leigh, J. A. (1994). Genetic characterisation of a Rhizobium meliloti lactose utilization locus. Mol. Microbiol., 11, 165-173.PubMedGoogle Scholar
  154. Jensen, J. B., Peters, N. K., and Bhuvaneswari, T. V. (2002). Redundancy in periplasmic binding protein-dependent transport systems for trehalose, sucrose, and maltose in Sinorhizobium meliloti. J. Bacteriol., 184, 2978-2986.PubMedGoogle Scholar
  155. Jiang, G. Q., Krishnan, A. H., Kim, Y. W., Wacek, T. J., and Krishnan, H. B. (2001). A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J. Bacteriol., 183, 2595-2604.PubMedGoogle Scholar
  156. Jiang, J. Q., Wei, W., Du, B. H., Li, X. H., Wang, L., and Yang, S. S. (2004). Salt-tolerance genes involved in cation efflux and osmoregulation of Sinorhizobium frediiRT19 detected by isolation and characterization of Tn5 mutants. FEMS Micrbiol. Lett., 239, 139-146.Google Scholar
  157. Jiménez-Zurdo, J. I., Van Dillewijn, P., Soto, M. J., de Felipe, M. R., Olivares, J., and Toro, N. (1995). Characterization of a Rhizobium melilotiproline dehydrogenase mutant altered in nodulation efficiency and competitiveness on alfalfa roots.Mol. Plant-Microbe Interact., 8, 492-498.Google Scholar
  158. Jiménez-Zurdo, J. I., Garcia-Rodríguez, F. M., and Toro, N. (1997). The Rhizobium meliloti putA gene: Its role in the establishment of the symbiotic interaction with alfalfa. Mol. Microbiol., 23, 85-93.PubMedGoogle Scholar
  159. Jin, H. N., Dilworth, M. J., and Glenn, A. R. (1990). 4-Aminobutyrate is not available to bacteroids of cowpea Rhizobium MNF2030 in snake bean nodules. Arch. Microbiol., 153, 455-462.Google Scholar
  160. Johnston, A. W. B., Yeoman, K. H., and Wexler, M. (2001). Metals and the rhizobial-legume symbiosis - Uptake, utilization and signalling. .Adv. Microb. Physiol., 45, 113-156.PubMedGoogle Scholar
  161. Johnston, A. W. B. (2004). Mechanisms and regulation of iron uptake in the rhizobia. In J. H. Crossa, A. R. Mey, and S. M. Payne (Eds.), Iron transport in bacteria: Molecular genetics, biochemistry, microbial pathogenesis and ecology. (pp. 469-488). Washington, D.C.: ASM Press.Google Scholar
  162. Jordan, D. C. (1984). Family III Rhizobiaceae. In N. R. Kreig and J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology. (pp. 234-244). Baltimore, MD: Williams and Wilkins.Google Scholar
  163. Jording, D., and Pühler, A. (1993). The membrane topology of the Rhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions with Escherichia coli K12 alkaline-phosphatase (PhoA) and beta-galactosidase (LacZ). Mol. Gen. Genet., 241, 106-114.PubMedGoogle Scholar
  164. Kaiser, B. N., Moreau, S., Castelli, J., Thomson, R., Lambert, A., Bogliolo, S., et al. (2003). The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J., 35, 295-304.PubMedGoogle Scholar
  165. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., et al. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res., 7, 331-338.PubMedGoogle Scholar
  166. Kaneko, T., Nakamura, Y., Sato, S., Minimisawa, K., Uchiumi, T., Sasamoto, S., et al. (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res., 9, 189-197.PubMedGoogle Scholar
  167. Kazakova, O. V., Tsuprun, V. L., Ivanushkin, A. G., Kaftanova, A. S., Pushkin, A. V., and Kretovich, V. L. (1988). Quaternary structure and kinetic characteristics of alanine dehydrogenase from Rhizobium lupinibacteroids. Dokl. Akad. Nauk SSSR(English translation), 300, 131-134.Google Scholar
  168. Kennedy, E. P. (1996). Membrane-derived oligosaccharides (periplasmic beta-D-glucans) of Escherichia coli. In F. C. Neidhardt (Ed.), Escherichia coliandSalmonellacellular and molecular biology. (pp. 1064-1071). Washington, D.C.: American Society for Microbiology Press.Google Scholar
  169. Kim, Y. S. (2002). Malonate metabolism: Biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol., 35, 443-451.PubMedGoogle Scholar
  170. Kimura, I., and Tajima, S. (1989). Presence and characteristics of NADP-malic enzyme in soybean nodule bacteroids. Soil Sci. Plant Nutr., 35, 271-280.Google Scholar
  171. Kiss, E., Huguet, T., Poinsot, V., and Batut, J. (2004). The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol. Plant-Microbe Interact., 17, 235-244.PubMedGoogle Scholar
  172. Kleiner, D., and Phillips, S. (1981). Relative levels of guanosine 5’-diphosphate 3’-diphosphate (ppGpp) in some N2 fixing bacteria during derepression and repression of nitrogenase. Arch. Microbiol., 128, 341-342.PubMedGoogle Scholar
  173. Knee, E. M., Gong, F. C., Gao, M. S., Teplitski, M., Jones, A. R., et al. (2001). Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol. Plant-Microbe Interact., 14, 775-784.PubMedGoogle Scholar
  174. Kouchi, H., Fukai, K., and Kihara, A. (1991). Metabolism of glutamate and aspartate in bacteroids isolated from soybean root nodules. J. Gen. Microbiol., 137, 2901-2910.Google Scholar
  175. Lambein, F., Khan, J. K., Kuo, Y. H., Campbell, C. G., and Briggs, C. J. (1993). Toxins in the seedlings of some varieties of grass pea. Nat. Toxins, 1, 246-249.PubMedGoogle Scholar
  176. Lambert, A., Østerås, M., Mandon, K., Poggi, M. C., and Le Rudulier, D. (2001). Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J. Bacteriol., 183, 4709-4717.PubMedGoogle Scholar
  177. Latch, J. N., and Margolin, W. (1997). Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. J. Bacteriol., 179, 2373-2381.PubMedGoogle Scholar
  178. Leigh, J. A., and Walker, G. C. (1994). Exopolysaccharides of Rhizobium - synthesis, regulation and symbiotic function. Trends Genet., 10, 63-67.PubMedGoogle Scholar
  179. LeVier, K., and Guerinot, M. L. (1996). The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer-membrane protein with similarity to hydroxamate-type siderophore receptors. J. Bacteriol., 178, 7265-7275.PubMedGoogle Scholar
  180. Lithgow, J. K., Wilkinson, A., Hardman, A., Rodelas, B., Wisniewski-Dyé, F., et al. (2000). The regulatory locus cinRI in Rhizobium leguminosarumcontrols a network of quorum-sensing loci. Mol. Microbiol., 37, 81-97.PubMedGoogle Scholar
  181. Lloret, J., Wulff, B. B. H., Rubio, J. M., Downie, J. A., Bonilla, I., and Rivilla, R. (1998). Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl. Environ. Microbiol., 64, 1024-1028.PubMedGoogle Scholar
  182. Lodwig, E., and Poole, P. S. (2003). Metabolism of Rhizobium bacteroids. Crit. Rev. Plant Sci., 22, 37-78.Google Scholar
  183. Lodwig, E., Kumar, S., Allaway, D., Bourdés, A., Prell, J., et al. (2004). Regulation of L-alanine dehydrogenase in Rhizobium leguminosarum bv. viciae and its role in pea nodules. J. Bacteriol., 186, 842-849.PubMedGoogle Scholar
  184. Lodwig, E. M., Hosie, A. H. F., Bourdés, A., Findlay, K., Allaway, D., et al. (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature, 422, 722-726.PubMedGoogle Scholar
  185. Lodwig, E. M., Leonard, M., Marroqui, S., Wheeler, T. R., Findlay, K., et al. (2005). Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Mol. Plant-Microbe Interact., 18, 67-74.PubMedGoogle Scholar
  186. Loh, J., Carlson, R. W., York, W. S., and Stacey, G. (2002). Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc. Natl. Acad. Sci. USA, 99, 14446-14451.PubMedGoogle Scholar
  187. Mandon, K., Michel-Reydellet, N., Encarnación, S., Kaminski, P. A., Leija, A., et al. (1998). Poly-β -hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression. J. Bacteriol., 180, 5070-5076.PubMedGoogle Scholar
  188. Marketon, M. M., and Gonzalez, J. E. (2002). Identification of two quorum-sensing systems in Sinorhizobium meliloti. J. Bacteriol., 184, 3466-3475.PubMedGoogle Scholar
  189. Marketon, M. M., Gronquist, M. R., Eberhard, A., and González, J. E. (2002). Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J. Bacteriol., 184, 5686-5695.PubMedGoogle Scholar
  190. Marketon, M. M., Glenn, S. A., Eberhard, A., and González, J. E. (2003). Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol., 185, 325-331.PubMedGoogle Scholar
  191. Marroquí, S., Zorreguieta, A., Santamaría, C., Temprano, F., Soberón, M., et al. (2001). Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J. Bacteriol., 183, 854-864.PubMedGoogle Scholar
  192. Marsudi, N. D. S., Glenn, A. R., and Dilworth, M. J. (1999). Identification and characterization of fast- and slow-growing root nodule bacteria from South-Western Australian soils able to nodulate Acacia saligna. Soil Biol. Biochem., 31, 1229-1238.Google Scholar
  193. McDermott, T. R., and Kahn, M. L. (1992). Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene. J. Bacteriol., 174, 4790-4797.PubMedGoogle Scholar
  194. McKay, I. A., Glenn, A. R., and Dilworth, M. J. (1985). Gluconeogenesis in Rhizobium leguminosarum MNF3841. J. Gen. Microbiol., 131, 2067-2073.Google Scholar
  195. McKay, I. A., Dilworth, M. J., and Glenn, A. R. (1989). Carbon catabolism in continuous cultures and bacteroids of Rhizobium leguminosarum MNF3841. Arch. Microbiol., 152, 606-610.Google Scholar
  196. McNab, R. (2003). How bacteria assemble flagella. Annu. Rev. Microbiol., 57, 77-100.Google Scholar
  197. McRae, D. G., Miller, R. W., and Berndt, W. B. (1989). Viability of alfalfa nodule bacteroids isolated by density gradient centrifugation. Symbiosis 7, 67-80.Google Scholar
  198. Milcamps, A., Ragatz, D. M., Lim, P., Berger, K. A., and de Bruijn, F. J. (1998). Isolation of carbon- and nitrogen-deprivation-induced loci of Sinorhizobium meliloti 1021 by Tn5-luxABmutagenesis. Microbiology, 144, 3205-3218.PubMedGoogle Scholar
  199. Milcamps, A., and de Bruijn, F. J. (1999). Identification of a novel nutrient-deprivation-induced Sinorhizobium melilotigene (hmgA) involved in the degradation of tyrosine. Microbiology, 145, 935-947.PubMedGoogle Scholar
  200. Milcamps, A., Struffi, P., and de Bruijn, F. J. (2001). The Sinorhizobium meliloti nutrient-deprivation-induced tyrosine degradation gene hmgA is controlled by a novel member of the arsR family of regulatory genes. Appl. Environ. Microbiol., 67, 2641-2648.PubMedGoogle Scholar
  201. Miller, K. J., Kennedy, E. P., and Reinhold, V. N. (1986). Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science, 231, 48-51.PubMedGoogle Scholar
  202. Miller, K. J., and Wood, J. M. (1996). Osmoadaptation by rhizosphere bacteria. Annu. Rev. Microbiol., 50, 101-136.PubMedGoogle Scholar
  203. Miller, R. W., McRae, D. G., and Joy, K. (1991). Glutamate and gamma-aminobutyrate metabolism in isolated Rhizobium meliloti bacteroids. Mol. Plant-Microbe Interact., 4, 37-45.Google Scholar
  204. Miranda-Ríos, J., Morera, C., Taboada, H., Dávalos, A., Encarnación, S., et al. (1997). Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb3 in Rhizobium etli. J. Bacteriol., 179, 6887-6893.PubMedGoogle Scholar
  205. Miranda-Ríos, J., Navarro, M., and Soberón, M. (2001). A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc. Natl. Acad. Sci. USA, 98, 9736-9741.PubMedGoogle Scholar
  206. Mitsch, M. J., Voegele, R. T., Cowie, A., Osteras, M., and Finan, T. M. (1998). Chimeric structure of the NAD(P)+- and NADP+-dependent malic enzymes of Rhizobium(Sinorhizobium) meliloti. J. Biol. Chem., 273, 9330-9336.PubMedGoogle Scholar
  207. Moënne-Loccoz, Y., Baldani, J. I., and Weaver, R. W. (1995). Sequential heat-curing of Tn5-mob-sac labeled plasmids from Rhizobium to obtain derivatives with various combinations of plasmids and no plasmid. Lett. Appl. Microbiol., 20, 175-179.Google Scholar
  208. Munns, D. N. (1986). Acid soil tolerance in legumes and rhizobia. In B. Tinker and A. Lauchli (Eds.),.Advances in plant nutrition. (pp. 63-91). New York, NY: Praeger Scientific.Google Scholar
  209. Murphy, P. J., Heycke, N., Trenz, S. P., Ratet, P., de Bruijn, F., and Schell, J. (1988). Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbiotically regulated. Proc. Natl. Acad. Sci. USA, 85, 9133-9137.PubMedGoogle Scholar
  210. Murphy, P. J., Wexler, W., Grzemski, W., Rao, J. P., and Gordon, D. (1995). Rhizopines - their role in symbiosis and competition. Soil Biol. Biochem., 27, 525-529.Google Scholar
  211. Newton, J. A., and Fray, R. G. (2004). Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol., 6, 213-224.PubMedGoogle Scholar
  212. Nienaber, A., Hennecke, H., and Fischer, H. M. (2001). Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. Mol. Microbiol., 41, 787-800.PubMedGoogle Scholar
  213. Nogales, J., Campos, R., Ben Abdelkhalek, H., Olivares, J., Lluch, C., and Sanjuan, J. (2002). Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol. Plant-Microbe Interact., 15, 225-232.PubMedGoogle Scholar
  214. O’Gara, F., Manian, S., and Meade, J. (1984). Isolation of an Asm- mutant of Rhizobium japonicum defective in N2 fixation. FEMS Microbiol. Lett., 24, 241-245.Google Scholar
  215. O’Hara, G. W., and Glenn, A. R. (1994). The adaptive acid tolerance response in root-nodule bacteria and Escherichia coli. Arch. Microbiol., 161, 286-292.PubMedGoogle Scholar
  216. Ohwada, T., Shirakawa, Y., Kusumoto, M., Masuda, H., and Sato, T. (1999). Susceptibility to hydrogen peroxide and catalase activity of root nodule bacteria. Biosci. Biotechnol. Biochem., 63, 457-462.PubMedGoogle Scholar
  217. Oke, V., and Long, S. R. (1999). Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol. Microbiol., 32, 837-849.PubMedGoogle Scholar
  218. Olson, J. W., and Maier, R. J. (2000). Dual roles of Bradyrhizobium japonicum nickelin protein in nickel storage and GTP-dependent Ni mobilization. J. Bacteriol., 182, 1702-1705.PubMedGoogle Scholar
  219. Oresnik, I. J., Pacarynuk, L. A., O’Brien, S. A. P., Yost, C. K., and Hynes, M. F. (1998). Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: Evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol. Plant-Microbe Interact., 11, 1175-1185.Google Scholar
  220. Oresnik, I. J., Liu, S. L., Yost, C. K., and Hynes, M. F. (2000). Megaplasmid pRme2011a of Sinorhizobium melilotiis not required for viability. J. Bacteriol., 182, 3582-3586.PubMedGoogle Scholar
  221. Osteras, M., Finan, T. M., and Stanley, J. (1991). Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase - gluconeogenesis and host-dependent symbiotic phenotype. Mol. Gen. Genet., 230, 257-269.PubMedGoogle Scholar
  222. Osteras, M., Driscoll, B. T., and Finan, T. M. (1995). Molecular and expression analysis of theRhizobium melilotiphosphoenolpyruvate carboxykinase (pckA) gene. J. Bacteriol., 177, 1452-1460.PubMedGoogle Scholar
  223. Pardo, M. A., Lagunez, J., Miranda, J., and Martinez, E. (1994). Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase. Mol. Microbiol., 11, 315-321.PubMedGoogle Scholar
  224. Parke, D., Rivelli, M., and Ornston, L. N. (1985). Chemotaxis to aromatic and hydroaromatic acids - comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J. Bacteriol., 163, 417-422.PubMedGoogle Scholar
  225. Patriarca, E. J., Tate, R., and Iaccarino, M. (2002). Key role of bacterial NH4 + metabolism in Rhizobium-plant symbiosis. Microbiol. Mol. Biol. Rev., 66, 203-222.PubMedGoogle Scholar
  226. Pellock, B. J., Teplitski, M., Boinay, R. P., Bauer, W. D., and Walker, G. C. (2002). A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol., 184, 5067-5076.Google Scholar
  227. Pfeffer, P. E., Becard, G., Rolin, D. B., Uknalis, J., Cooke, P., and Tu, S. (1994). In vivo nuclear magnetic resonance study of the osmoregulation of phosphocholine-substituted beta-1,3;1,6 cyclic glucan and its associated carbon metabolism in Bradyrhizobium japonicum USDA 110. Appl. Environ. Microbiol., 60, 2137-2146.PubMedGoogle Scholar
  228. Phillips, D. A., Sande, E. S., Vriezen, J. A. C., de Bruijn, F. J., Le Rudulier, D., and Joseph, C. M. (1998). A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl. Environ. Microbiol., 64, 3954-3960.PubMedGoogle Scholar
  229. Platero, R., Peixoto, L., O’Brian, M. R., and Fabiano, E. (2004). Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl. Environ. Microbiol., 70, 4349-4355.PubMedGoogle Scholar
  230. Polcyn, W., Lucinski, R., Tom-Petersen, A., Leser, T. D., Marsh, T. L., and Nybroe, O. (2003). Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiol. Evol., 46, 53-62.Google Scholar
  231. Poole, P. S., Dilworth, M. J., and Glenn, A. R. (1984). Acquisition of aspartase activity in Rhizobium leguminosarum WU235. J. Gen. Microbiol., 130, 881-886.Google Scholar
  232. Poole, P. S., Franklin, M., Glenn, A. R., and Dilworth, M. J. (1985). The transport of L-glutamate by Rhizobium leguminosarum involves a common amino acid carrier. J. Gen. Microbiol., 131, 1441-1448.Google Scholar
  233. Poole, P. S., Blyth, A., Reid, C. J., and Walters, K. (1994). myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv viciae. Microbiology, 140, 2787-2795.Google Scholar
  234. Poole, P. S., Reid, C., East, A. K., Allaway, D., Day, M., and Leonard, M. (1999). Regulation of the mdh-sucCDAB operon in Rhizobium leguminosarum. FEMS Microbiol. Lett., 176, 247-255.Google Scholar
  235. Poole, P. S., and Allaway, D. A. (2000). Carbon and nitrogen metabolism in Rhizobium. Adv. Microb. Physiol., 43, 117-163.PubMedGoogle Scholar
  236. Povolo, S., Tombolini, R., Morea, A., Anderson, A. J., Casella, S., and Nuti, M. P. (1994). Isolation and characterization of mutants of Rhizobium meliloti unable to synthesize poly-β -hydroxybutyrate. Can. J. Microbiol., 40, 823-829.Google Scholar
  237. Povolo, S., and Casella, S. (2000). A critical role for aniA in energy-carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti. Arch. Microbiol., 174, 42-49.PubMedGoogle Scholar
  238. Prell, J., Boesten, B., Poole, P. S., and Priefer, U. B. (2002). The Rhizobium leguminosarum bv. viciaeVF39 γ -aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology, 148, 615-623.PubMedGoogle Scholar
  239. Priefer, U. B., Aurag, J., Boesten, B., Bouhmouch, I., Defez, R., Filali-Maltouf, A., et al. (2001). Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J. Biotechnol., 91, 223-236.PubMedGoogle Scholar
  240. Primm, T. P., Andersen, S. J., Mizrahi, V., Avarbock, D., Rubin, H., and Barry, III, C. E. (2000). The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol., 182, 4889-4898.PubMedGoogle Scholar
  241. Primrose, S. B., and Ronson, C. W. (1980). Polyol metabolism by Rhizobium trifolii. J. Bacteriol., 141, 1109-1114.PubMedGoogle Scholar
  242. Putnoky, P., Kereszt, A., Nakamura, T., Endre, G., Grosskopf, E., et al. (1998). The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol. Microbiol., 28, 1091-1101.PubMedGoogle Scholar
  243. Qi, Z. H., and O’Brian, M. R. (2002). Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol. Cell, 9, 155-162.PubMedGoogle Scholar
  244. Rao, J. R., and Cooper, J. E. (1994). Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J. Bacteriol., 176, 5409-5413.PubMedGoogle Scholar
  245. Rao, J. R., and Cooper, J. E. (1995). Soybean nodulating rhizobia modify nodgene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol. Plant-Microbe Interact., 8, 855-862.Google Scholar
  246. Rao, J. R., Cooper, J. E., Everaert, E. S. W., and DeCooman, L. (1996). Assimilation of nod gene inducer C-14-naringenin and the incorporation of labelled carbon atoms into the acyl side chain of a host-specific nod factor produced by Rhizobium leguminosarum bv viciae. Plant Soil, 186, 63-67.Google Scholar
  247. Rastogi, V. K., and Watson, R. J. (1991). Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J. Bacteriol., 173, 2879-2887.PubMedGoogle Scholar
  248. Reeve, W. G., Tiwari, R. P., Dilworth, M. J., and Glenn, A. R. (1993). Calcium affects the growth and survival of Rhizobium meliloti. Soil Biol. Biochem., 25, 581-586.Google Scholar
  249. Reeve, W. G., Dilworth, M. J., Tiwari, R. P., and Glenn, A. R. (1997). Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR. Microbiology, 143, 1951-1958.PubMedGoogle Scholar
  250. Reeve, W. G., Tiwari, R. P., Wong, C. M., Dilworth, M. J., and Glenn, A. R. (1998). The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses. Microbiology, 144, 3335-3342.PubMedGoogle Scholar
  251. Reeve, W. G., Tiwari, R. P., Worsley, P. S., Dilworth, M. J., Glenn, A. R., and Howieson, J. G. (1999). Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology, 145, 1307-1316.PubMedGoogle Scholar
  252. Reeve, W. G., Tiwari, R. P., Kale, N. B., Dilworth, M. J., and Glenn, A. R. (2002). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol. Microbiol., 43, 981-991.PubMedGoogle Scholar
  253. Reeve, W. G., Tiwari, R. P., Guerreiro, N., Stubbs, J., Dilworth, M. J., et al. (2004). Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis. J. Mol. Microbiol. Biotechnol., 7, 140-147.PubMedGoogle Scholar
  254. Reid, C. J., Walshaw, D. L., and Poole, P. S. (1996). Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons. Microbiology, 142, 2603-2612.PubMedGoogle Scholar
  255. Riccillo, P. M., Muglia, C. I., de Bruijn, F. J., Roe, A. J., Booth, I. R., and Aguilar, O. M. (2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J. Bacteriol., 182, 1748-1753.PubMedGoogle Scholar
  256. Richardson, J. S., Hynes, M. F., and Oresnik, I. J. (2004). A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv.trifolii. J. Bacteriol., 186, 8433-8442.PubMedGoogle Scholar
  257. Robson, A. D., and Loneragan, J. (1970). Nodulation and growth of Medicago truncatula on acid soils. II Colonization of acid soils by Rhizobium meliloti. Aust. J. Agric. Res., 21, 435-445.Google Scholar
  258. Rodelas, B., Lithgow, J. K., Wisniewski-Dyé, F., Hardman, A., Wilkinson, A., et al. (1999). Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol., 181, 3816-3823.PubMedGoogle Scholar
  259. Roessler, M., and Müller, V. (2001). Osmoadaptation in bacteria and archaea: Common principles and differences. Environ. Microbiol., 3, 743-754.Google Scholar
  260. Roest, H. P., Goosen-de Roo, L., Wijffelman, C. A., De Maagd, R. A., and Lugtenberg, B. J. J. (1995). Outer-membrane protein changes during bacteroid development are independent of nitrogen-fixation and differ between indeterminate and determinate nodulating host plants of Rhizobium leguminosarum. Mol. Plant-Microbe Interact., 8, 14-22.Google Scholar
  261. Ronson, C. W., and Primrose, S. B. (1979). Carbohydrate metabolism in Rhizobium trifolii: Identification and symbiotic properties of mutants. J. Gen. Microbiol., 112, 77-88.Google Scholar
  262. Rosemeyer, V., Michiels, J., Verreth, C., and Vanderleyden, J. (1998). luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol., 180, 815-821.PubMedGoogle Scholar
  263. Rosenblueth, M., Hynes, M. F., and Martínez-Romero, E. (1998). Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean exudate compounds. Mol. Gen. Genet., 258, 587-598.PubMedGoogle Scholar
  264. Rosendahl, L., Dilworth, M. J., and Glenn, A. R. (1992). Exchange of metabolites across the peribacteroid membrane in pea root nodules. J. Plant Physiol., 139, 635-638.Google Scholar
  265. Ruberg, S., Tian, Z. X., Krol, E., Linke, B., Meyer, F., et al. (2003). Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: Genome-wide profiling of osmoadaptive gene expression. J. Biotechnol., 106, 255-268.PubMedGoogle Scholar
  266. Rusanganwa, E., and Gupta, R. S. (1993). Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene, 126, 67-75.PubMedGoogle Scholar
  267. Salminen, S. O., and Streeter, J. G. (1987). Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids. J. Bacteriol., 169, 495-499.PubMedGoogle Scholar
  268. Salminen, S. O., and Streeter, J. G. (1990). Factors contributing to the accumulation of glutamate in Bradyrhizobium japonicum bacteroids under microaerobic conditions. J. Gen. Microbiol., 136, 2119-2126.Google Scholar
  269. Santos, R., Hérouart, D., Sigaud, S., Touati, D., and Puppo, A. (2001). Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol. Plant-Microbe Interact., 14, 86-89.PubMedGoogle Scholar
  270. Scharf, B., Schuster-Wolff-Bühring, H., Rachel, R., and Schmitt, R. (2001). Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: Importance of flagellin A for flagellar filament structure and transcriptional regulation. J. Bacteriol., 183, 5334-5342.PubMedGoogle Scholar
  271. Scharf, B. (2002). Real-time imaging of fluorescent flagellar filaments ofRhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J. Bacteriol., 184, 5979-5986.PubMedGoogle Scholar
  272. Scharf, B., and Schmitt, R. (2002). Sensory transduction to the flagellar motor of Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol., 4, 183-186.PubMedGoogle Scholar
  273. Schmitt, R. (2002). Sinorhizobial chemotaxis: A departure from the enterobacterial paradigm. Microbiology, 148, 627-631.PubMedGoogle Scholar
  274. Schripsema, J., de Rudder, K. E. E., van Vliet, T. B., Lankhorst, P. P., de Vroom, E., et al. (1996). Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol., 178, 366-371.Google Scholar
  275. Schwartz, C. J., Giel, J. L., Patschkowski, T., Luther, C., Ruzicka, F. J., et al. (2001). IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. USA., 98, 14895-14900.PubMedGoogle Scholar
  276. Slonczewski, J. L., and Foster, J. W. (1996). pH-regulated genes and survival at extreme pH. In F. C. C. E. Neidhardt (Ed.), Escherichia coliandSalmonellacellular and molecular biology. (pp. 283-306). Washington, D.C.: American Society for Microbiology Press.Google Scholar
  277. Smit, G., Swart, S., Lugtenberg, B. J., and Kijne, J. W. (1992). Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol. Microbiol., 6, 2897-2903.PubMedGoogle Scholar
  278. Smith, L. T., Pocard, J. A., Bernard, T., and Le Rudulier, D. (1988). Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol., 170, 3142-3149.PubMedGoogle Scholar
  279. Smith, L. T., and Smith, G. M. (1989). An osmoregulated dipeptide in stressed Rhizobium meliloti. J. Bacteriol., 171, 4714-4717.PubMedGoogle Scholar
  280. Smith, M. T., and Emerich, D. W. (1993a). Alanine dehydrogenase from soybean nodule bacteroids: purification and properties. Arch. Biochem. Biophys., 304, 379-385.Google Scholar
  281. Smith, M. T., and Emerich, D. W. (1993b). Alanine dehydrogenase from soybean nodule bacteroids - kinetic mechanism and pH studies. J. Biol. Chem., 268, 10746-10753.Google Scholar
  282. Soedarjo, M., and Borthakur, D. (1996). Mimosine produced by the tree-legume Leucaena provides growth advantages to some Rhizobium strains that utilize it as a source of carbon and nitrogen. Plant Soil, 186, 87-92.Google Scholar
  283. Soedarjo, M., and Borthakur, D. (1998). Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobiumstrains. Soil Biol. Biochem., 30, 1605-1613.Google Scholar
  284. Sourjik, V., and Schmitt, R. (1996). Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol., 22, 427-436.PubMedGoogle Scholar
  285. Sourjik, V., Sterr, W., Platzer, J., Bos, I., Haslbeck, M., and Schmitt, R. (1998). Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium melilotichromosome. Gene, 223, 283-290.PubMedGoogle Scholar
  286. Sourjik, V., Muschler, P., Scharf, B., and Schmitt, R. (2000). VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J. Bacteriol., 182, 782-788.PubMedGoogle Scholar
  287. Sourjik, V., and Berg, H. C. (2004). Functional interactions between receptors in bacterial chemotaxis. Nature, 428, 437-441.PubMedGoogle Scholar
  288. Soussi, M., Santamaria, M., Ocana, A., and Lluch, C. (2001). Effects of salinity on protein and lipopolysaccharide pattern in a salt-tolerant strain of Mesorhizobium ciceri. J. Appl. Microbiol., 90, 476-481.PubMedGoogle Scholar
  289. Stanfield, S. W., Ielpi, L., O’Brochta, D., Helinski, D. R., and Ditta, G. S. (1988). The ndvA gene product of Rhizobium meliloti is required for beta-(1,2)glucan production and has homology to the ATP-binding export protein HlyB. J. Bacteriol., 170, 3523-3530.PubMedGoogle Scholar
  290. Steele, H. L., Werner, D., and Cooper, J. E. (1999). Flavonoids in seed and root exudates of Lotus pedunculatus and their biotransformation by Mesorhizobium loti. Physiol. Plant., 107, 251-258.Google Scholar
  291. Stowers, M. D. (1985). Carbon metabolism in Rhizobium species. Annu. Rev. Microbiol., 39, 89-108.PubMedGoogle Scholar
  292. Streeter, J. G., and Salminen, S. O. (1990). Periplasmic metabolism of glutamate and aspartate by intact Bradyrhizobium japonicum bacteroids. Biochim. Biophys. Acta, 1035, 257-265.PubMedGoogle Scholar
  293. Streit, W. R., Joseph, C. M., and Phillips, D. A. (1996). Biotin and other water-soluble vitamins are key growth-factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol. Plant-Microbe Interact., 9, 330-338.PubMedGoogle Scholar
  294. Stripf, R., and Werner, D. (1978). Differentiation of Rhizobium japonicum, II. Enzymatic activities in bacteroids and plant cytoplasm during the development of nodules of Glycine max. Z. Naturforsch., 33c, 373-381.Google Scholar
  295. Sullivan, J. T., Brown, S. D., Yocum, R. R., and Ronson, C. W. (2001). The bio operon on the acquired symbiosis island of Mesorhizobium sp strain R7A includes a novel gene involved in pimeloyl-CoA synthesis. Microbiology, 147, 1315-1322.PubMedGoogle Scholar
  296. Talibart, R., Jebbar, M., Gouesbet, G., Himdi-Kabbab, S., Wroblewski, H., et al. (1994). Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J. Bacteriol., 176, 5210-5217.PubMedGoogle Scholar
  297. Taté, R., Riccio, A., Merrick, M., and Patriarca, E. J. (1998). The Rhizobium etli amtB gene coding for an NH4 + transporter is down-regulated early during bacteroid differentiation. Mol. Plant-Microbe Interact., 11, 188-198.PubMedGoogle Scholar
  298. Taté, R., Cermola, M., Riccio, A., Iaccarino, M., Merrick, M., Favre, R., and Patriarca, E. J. (1999). Ectopic expression of the Rhizobium etli amtB gene affects the symbiosome differentiation process and nodule development. Mol. Plant-Microbe Interact., 12, 515-525.Google Scholar
  299. Taté, R., Ferraioli, S., Filosa, S., Cermola, M., Riccio, A., et al. (2004). Glutamine utilization by Rhizobium etli. Mol. Plant-Microbe Interact., 17, 720-728.PubMedGoogle Scholar
  300. Tepfer, D., Goldmann, A., Pamboukdjian, N., Maille, M., Lepingle, A., et al. (1988). A plasmid of Rhizobium meliloti41 encodes catabolism of two compounds from root exudate ofCalystegium sepium. J. Bacteriol., 170, 1153-1161.PubMedGoogle Scholar
  301. Thony-Meyer, L., and Kunzler, P. (1996). The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root-nodule symbiosis. J. Bacteriol., 178, 6166-6172.PubMedGoogle Scholar
  302. Thorne, S. H., and Williams, H. D. (1997). Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: Analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J. Bacteriol., 179, 6894-6901..PubMedGoogle Scholar
  303. Tiwari, R. P., Reeve, W. G., and Glenn, A. R. (1992). Mutations conferring acid-sensitivity in the acid-tolerant strains of Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viceae WSM710. FEMS Microbiol. Lett., 100, 107-112.Google Scholar
  304. Tiwari, R. P., Reeve, W. G., Dilworth, M. J., and Glenn, A. R. (1996a). An essential role for actA in acid tolerance of Rhizobium meliloti. Microbiology, 142, 601-610.Google Scholar
  305. Tiwari, R. P., Reeve, W. G., Dilworth, M. J., and Glenn, A. R. (1996b). Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology, 142, 1693-1704.Google Scholar
  306. Tiwari, R. P., Reeve, W. G., Fenner, B. J., Dilworth, M. J., Glenn, A. R., and Howieson, J. G. (2004). Probing for pH-regulated genes in Sinorhizobium medicae using transcriptional analysis. J. Mol. Microbiol. Biotechnol., 7, 133-139.PubMedGoogle Scholar
  307. Todd, J. D., Wexler, M., Sawers, G., Yeoman, K. H., Poole, P. S., and Johnston, A. W. B. (2002). RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology, 148, 4059-4071.PubMedGoogle Scholar
  308. Todd, J. D., Sawers, G., and Johnston, A. W. B. (2005). Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum. Mol. Gen. Genom., 273, 197-206.Google Scholar
  309. Tomaszewska, B., and Werner, D. (1995). Purification and properties of NAD-dependent and NADP-dependent malic enzymes from Bradyrhizobium japonicum bacteroids. J. Plant Physiol., 146, 591-595.Google Scholar
  310. Tombolini, R., and Nuti, M. P. (1989). Poly(β -hydroyxalkanoate) biosynthesis and accumulation by different Rhizobium species. FEMS Microbiol. Lett., 60, 299-304.Google Scholar
  311. Trachtenberg, S., DeRosier, D. J., and Macnab, R. M. (1987). 3-Dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament. J. Mol. Biol., 195, 603-620.PubMedGoogle Scholar
  312. Trzebiatowski, J. R., Ragatz, D. M., and de Bruijn, F. J. (2001). Isolation and regulation of Sinorhizobium meliloti1021 loci induced by oxygen limitation. Appl. Environ. Microbiol., 67, 3728-3731.PubMedGoogle Scholar
  313. Tsien, H. C., and Schmidt, E. L. (1977). Polarity in the exponential phase Rhizobium japonicum cell. Can. J. Microbiol., 23, 1274-1284.PubMedGoogle Scholar
  314. Tun-Garrido, C., Bustos, P., González, V., and Brom, S. (2003). Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J. Bacteriol., 185, 1681-1692.PubMedGoogle Scholar
  315. Uchiumi, T., Ohwada, T., Itakura, M., Mitsui, H., Nukui, N., et al. (2004). Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J. Bacteriol., 186, 2439-2448.PubMedGoogle Scholar
  316. Ucker, D. S., and Signer, E. R. (1978). Catabolite-repression-like phenomenon in Rhizobium meliloti. J. Bacteriol., 136, 1197-1200.PubMedGoogle Scholar
  317. Ugalde, J. E., Lepek, V., Uttaro, A., Estrella, J., Iglesias, A., and Ugalde, R. A. (1998). Gene organization and transcription analysis of the Agrobacterium tumefaciens glycogen (glg) operon: Two transcripts for the single phosphoglucomutase gene. J. Bacteriol., 180, 6557-6564.PubMedGoogle Scholar
  318. Urban, J. E., and Dazzo, F. B. (1982). Succinate-induced morphology of Rhizobium trifolii 0403 resembles that of bacteroids in clover nodules. Appl. Environ. Microbiol., 44, 219-226.PubMedGoogle Scholar
  319. Uttaro, A. D., and Ugalde, R. A. (1994). A chromosomal cluster of genes encoding ADP-glucose synthetase, glycogen-synthase and phosphoglucomutase in Agrobacterium tumefaciens. Gene, 150, 117-122.PubMedGoogle Scholar
  320. Uttaro, A. D., Ugalde, R. A., Preiss, J., and Iglesias, A. A. (1998). Cloning and expression of the glgC gene from Agrobacterium tumefaciens: Purification and characterization of the ADPglucose synthetase. Arch. Biochem. Biophys., 357, 13-21.PubMedGoogle Scholar
  321. Van Egeraat, A. W. S. M. (1975a). The possible role of homoserine in the development ofRhizobium leguminosarum in the rhizosphere of pea seedlings. Plant Soil, 42, 380-387.Google Scholar
  322. Van Egeraat, A. W. S. M. (1975b). The growth of Rhizobium leguminosarum on the root surface and in the rhizosphere of pea seedlings in relation to root exudates. Plant Soil, 42, 367-379.Google Scholar
  323. Van de Broek, A., and Vanderleyden, J. (1995). The role of bacterial motility, chemotaxis, and attachment in bacteria plant interactions. Mol. Plant-Microbe Interact., 8, 800-810.Google Scholar
  324. Vargas, M. C., Encarnación, S., Dávalos, A., Reyes-Pérez, A., Mora, Y., et al. (2003). Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. Microbiology, 149, 1165-1176.Google Scholar
  325. Vincent, J. M. (1962). Influence of calcium and magnesium on the growth of Rhizobium. J. Gen. Microbiol., 28, 658-663.Google Scholar
  326. Vinuesa, P., Neumann-Silkow, F., Pacios-Bras, C., Spaink, H. P., Martínez-Romero, E., and Werner, D. (2003). Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol. Plant-Microbe Interact., 16, 159-168.PubMedGoogle Scholar
  327. Voegele, R. T., Bardin, S., and Finan, T. M. (1997). Characterization of the Rhizobium (Sinorhizobium) meliloti high- and low-affinity phosphate uptake systems. J. Bacteriol., 179, 7226-7232.PubMedGoogle Scholar
  328. Wagner, S. C., Skipper, H. D., and Hartel, P. G. (1995). Medium to study carbon utilization by bradyrhizobium strains. Can. J. Microbiol., 41, 633-636.Google Scholar
  329. Wallington, E. J., and Lund, P. A. (1994). Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology, 140, 113-122.PubMedGoogle Scholar
  330. Walshaw, D. L., and Poole, P. S. (1996). The general L-amino acid permease of Rhizobium leguminosarum is an ABC uptake system that also influences efflux of solutes. Mol. Microbiol., 21, 1239-1252.PubMedGoogle Scholar
  331. Walshaw, D. L., Lowthorpe, S., East, A., and Poole, P. S. (1997a). Distribution of a sub-class of bacterial ABC polar amino acid transporter and identification of an N-terminal region involved in solute specificity. FEBS Lett., 414, 397-401.Google Scholar
  332. Walshaw, D. L., Reid, C. J., and Poole, P. S. (1997b). The general amino acid permease of Rhizobium leguminosarum strain 3841 is negatively regulated by the Ntr system. FEMS Microbiol. Lett., 152, 57-64.Google Scholar
  333. Walshaw, D. L., Wilkinson, A., Mundy, M., Smith, M., and Poole, P. S. (1997c). Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiology, 143, 2209-2221.Google Scholar
  334. Wang, P., Ingram-Smith, C., Hadley, J. A., and Miller, K. J. (1999). Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic β -glucan biosynthesis. J. Bacteriol., 181, 4576-4583.PubMedGoogle Scholar
  335. Watkin, D. (1997). So you want to train in general surgery? Brit. J. Hosp. Med., 57, 569-570.Google Scholar
  336. Watson, R. J., Rastogi, V. K., and Chan, Y. K. (1993). Aspartate transport in Rhizobium meliloti. J. Gen. Microbiol., 139, 1315-1323.Google Scholar
  337. Wei, X., and Bauer, W. D. (1998). Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl. Environ. Microbiol., 64, 1708-1714.PubMedGoogle Scholar
  338. Wei, X. M., and Bauer, W. D. (1999). Tn5-induced and spontaneous switching of Sinorhizobium melilotito faster-swarming behavior. Appl. Environ. Microbiol., 65, 1228-1235.PubMedGoogle Scholar
  339. Wells, D. H., and Long, S. R. (2002). The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Mol. Microbiol., 43, 1115-1127.PubMedGoogle Scholar
  340. Wells, D. H., and Long, S. R. (2003). Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant. J. Bacteriol., 185, 5602-5610.PubMedGoogle Scholar
  341. Wexler, M., Gordon, D. M., and Murphy, P. J. (1996). Genetic-relationships among rhizopine-producing Rhizobium strains. Microbiology, 142, 1059-1066.Google Scholar
  342. Wexler, M., Todd, J. D., Kolade, O., Bellini, D., Hemmings, A. M., et al. (2003). Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. Microbiology, 149, 1357-1365.PubMedGoogle Scholar
  343. Wilkinson, A., Danino, V., Wisniewski-Dyé, F., Lithgow, J. K., and Downie, J. A. (2002). N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J. Bacteriol., 184, 4510-4519.PubMedGoogle Scholar
  344. Willis, L. B., and Walker, G. C. (1999). A novel Sinorhizobium meliloti operon encodes an α -glucosidase and a periplasmic-binding-protein-dependent transport system for α -glucosides. J. Bacteriol., 181, 4176-4184.PubMedGoogle Scholar
  345. Wisniewski-Dyé, F., and Downie, J. A. (2002). Quorum-sensing in Rhizobium. Antonie van Leeuwenhoek, 81, 397-407.PubMedGoogle Scholar
  346. Wright, E. L., Deakin, W. J., and Shaw, C. H. (1998). A chemotaxis cluster from Agrobacterium tumefaciens. Gene, 220, 83-89.PubMedGoogle Scholar
  347. Yost, C. K., Rochepeau, P., and Hynes, M. F. (1998). Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology, 144, 1945-1956.PubMedGoogle Scholar
  348. Yost, C. K., and Hynes, M. F. (2000). Rhizobial motility and chemotaxis: Molecular biology and ecological role. In E. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system of a biological process. (pp. 237-250).Wymondham, UK: Horizon Scientific Press.Google Scholar
  349. Yost, C. K., Clark, K. T., Del Bel, K. L., and Hynes, M. F. (2003). Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiol. Scholar
  350. Yost, C. K., Del Bel, K. L., Quandt, J., and Hynes, M. F. (2004). Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch. Microbiol., 182, 505-513.PubMedGoogle Scholar
  351. Yurgel, S., Mortimer, M. W., Rogers, K. N., and Kahn, M. L. (2000). New substrates for the dicarboxylate transport system of Sinorhizobium meliloti. J. Bacteriol., 182, 4216-4221.PubMedGoogle Scholar
  352. Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63, 968-989.PubMedGoogle Scholar
  353. Zevenhuizen, L. P. T. M. (1981). Cellular glycogen, β -1,2-glucan, poly-β -hydroxybutyric acid and extracellular polysaccharides in fast growing species of Rhizobium. Antonie van Leeuwenhoek, 47, 481-497.PubMedGoogle Scholar
  354. Zlotnikov, K. M., Marunov, S. K., and Khmelnitskii, M. I. (1984). Disturbance in assimilation of fixed nitrogen by soybean plants in symbiosis with the asp- bacterium Rhizobium japonicum. Dokl. Akad. Nauk SSSR., 275, 189-192.Google Scholar
  355. Zorreguieta, A., Geremia, R. A., Cavaignac, S., Cangelosi, G. A., Nester, E. W., and Ugalde, R. A. (1988). Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol. Plant-Microbe Interact., 1, 121-127.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. S. Poole
    • 1
  • M. F. Hynes
    • 2
  • A. W. B. Johnston
    • 3
  • R. P. Tiwari
    • 4
  • W. G. Reeve
    • 4
  • J. A. Downie
    • 5
  1. 1.School of Biological SciencesUniversity of ReadingReadingUK
  2. 2.Biological SciencesUniversity of CalgaryCalgaryCanada
  3. 3.School of Biological SciencesUniversity of East AngliaNorwichUK
  4. 4.School of Biological Sciences and BiotechnologyMurdoch UniversityMurdoch
  5. 5.John Innes CentreColney LaneUK

Personalised recommendations