Skip to main content

Ecology of the Root-Nodule Bacteria of Legumes

  • Chapter

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 7))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarons, S. R., and Graham, P. H. (1991). Response of Rhizobium leguminosarum bv phaseolito acidity. Plant Soil, 134, 145-151.

    CAS  Google Scholar 

  • Abaidoo, R. C., Keyser, H. H., Singleton, P. W., and Borthakur, D. (2000). Bradyrhizobiumspp. (TGx) isolates nodulating the new soybean cultivars in Africa are diverse and distinct from bradyrhizobia that nodulate North American soybeans. Int. J. Syst. Evol. Microbiol.,50, 225-234.

    PubMed  CAS  Google Scholar 

  • Abaidoo, R. C., Keyser, H. H., Singleton, P. W., and Borthakur, D. (2002). Comparison of molecular and antibiotic resistance profile methods for the population analysis of Bradyrhizobium spp. (TGx) isolates that nodulate the new TGx soybean cultivars in Africa. J. Appl. Microbiol.,92, 109-117.

    PubMed  CAS  Google Scholar 

  • Achouak, W., Christen, R., Barakat, M., Martel, M. H., and Heulin, T. (1999). Burkholderia caribensissp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int. J. Syst. Bacteriol., 49, 787-794.

    PubMed  CAS  Google Scholar 

  • Aguilar, O. M., Lopez, M. V., Riccillo, P. M., Gonzalez, R. A., Pagano, M., Grasso, D. H., et al. (1998). Prevalence of the Rhizobium etli-like allele in genes coding for 16S rRNA among the indigenous rhizobial populations found associated with wild beans from the southern Andes in Argentina. Appl. Environ. Microbiol.,64, 3520-3524.

    PubMed  CAS  Google Scholar 

  • Aguilar, O. M., Riva, O., and Peltzer, E. (2004). Analysis of Rhizobium etliand of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc. Nat. Acad. Sci. USA, 101, 13548-13553.

    PubMed  CAS  Google Scholar 

  • Alexander, M. (1982). Ecology of Rhizobium.In M. Alexander (Ed.), Biological nitrogen fixation. Ecology, technology and physiology (pp. 39-50). New York, NY: Plenum Press.

    Google Scholar 

  • Al Niemi, T. S., Summers, M. L., Elkins, J. G., Kahn, M. L., and McDermott, T. R. (1997). Regulation of the phosphate stress response in Rhizobium meliloti by PhoB. Appl. Environ. Microbiol., 63, 4978-4981.

    PubMed  CAS  Google Scholar 

  • Amarger, N. (2001). Rhizobia in the field. Adv. Agron., 73, 109-168.

    CAS  Google Scholar 

  • Amarger, N., Bours, M., Revoy, F., Allard, M. R., and Laguerre, G. (1994). Rhizobium tropicinodulates field-grown Phaseolus vulgaris in France. Plant Soil, 161,147-156.

    CAS  Google Scholar 

  • Amarger, N., Macheret, V., and Laguerre, G. (1997). Rhizobium gallicumsp. nov. and Rhizobium giardiniisp. nov. from Phaseolus vulgarisnodules. Int. J. Syst. Bacteriol., 47, 996-1006.

    PubMed  CAS  Google Scholar 

  • Andrade, D. S., Murphy, P. J., and Giller, K. E. (2002). The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgarisL. in Brazil. Appl. Environ. Microbiol., 68, 4025-4034.

    PubMed  CAS  Google Scholar 

  • Antipchuk, A. F., and Kosenko, L. V. (2004). The influence of lipopolysaccharides and glucans from two Rhizobium leguminosarum bv viciae strains on the formation and efficiency of their symbioses with pea plants. Mikrobiologiya, 73, 51-55.

    CAS  Google Scholar 

  • Antonovics, J. (1976). The input from population genetics: “The new ecological genetics”. Syst. Bot., 1, 233-245.

    Google Scholar 

  • Anyango, B., Wilson, K. J., Beynon, J. L., and Giller, K. E. (1995). Diversity of rhizobia nodulating Phaseolus vulgarisL. in two Kenyan soils with contrasting pHs. Appl. Environ. Microbiol., 61, 4016-4021.

    PubMed  CAS  Google Scholar 

  • Baer, S. G., Blair, J. M., Collins, S. L., and Knapp, A. K. (2003). Soil resources regulate productivity and diversity in newly established tallgrass prairie. Ecol., 84, 724-735.

    Google Scholar 

  • Baldwin, I. L., and Fred, E. B. (1929). Nomenclature of the root nodule bacteria of the leguminosae. J. Bacteriol., 17, 141-150.

    PubMed  CAS  Google Scholar 

  • Ballen, K. G., Graham, P. H., Jones, R. K., and Bowers, J. H. (1998). Acidity and calcium interaction affecting cell envelope stability in Rhizobium. Can. J. Microbiol., 44, 582-587.

    CAS  Google Scholar 

  • Bardin, S. D., Huang, H. C., Pinto, J., Amundsen, E. J., and Erickson, R. S. (2004) Biological control of Pythiumdamping off of pea and sugar beet by Rhizobium leguminosarumbv viciae. Can. J. Bot., 82, 291-296.

    Google Scholar 

  • Bauer, W. D., and Teplitski, M. (2001). Can plants manipulate bacterial quorum sensing? Aust. J. Plant Physiol., 28, 913-921.

    CAS  Google Scholar 

  • Beebe, S., Skroch, P. W., Tohme, J., Duque, M. C., Pedraza, F., and Nienhuis, J. (2000). Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci., 40, 264-273.

    Google Scholar 

  • Bergersen, F. J. (1958). The bacterial component of soybean root nodules: Changes in respiratory activity, cell dry weight and nucleic acid content with increasing nodule age. J. Gen. Microbiol., 19, 312-323.

    PubMed  CAS  Google Scholar 

  • Bernal, G. (1993). Characterization of Ecuadorian and Argentinean bean rhizobia and their specificity with Phaseolus vulgarisfrom different gene pools. M.S. thesis, University of Minnesota, MN, USA.

    Google Scholar 

  • Bernal, G., and Graham, P. H. (2001). Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuador, and comparisons with Mexican bean rhizobia. Can. J. Microbiol., 47, 526-534.

    PubMed  CAS  Google Scholar 

  • Bernal, G. R., Tlusty, B., Estevez de Jensen, C., van Berkum, P., and Graham, P. H. (2004). Characteristics of rhizobia nodulating beans in the central region of Minnesota. Can. J. Microbiol., 50, 1023-1031.

    PubMed  CAS  Google Scholar 

  • Bever, J. D., Westover, K. M., and Antonovics, J. (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol., 85, 561-573.

    Google Scholar 

  • Bever, J. D., and Simms, E .L. (2000). Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity, 85, 366-372.

    CAS  Google Scholar 

  • Beyene, D., Kassa, S., Ampy, F., Asseffa, A., Gebremedhin, T., and van Berkum, P. (2004). Ethiopian soils harbor natural populations of rhizobia that form symbioses with common bean (Phaseolus vulgaris L.). Arch. Microbiol., 181, 129-136.

    PubMed  CAS  Google Scholar 

  • Beyhaut, E., Tlusty, B., van Berkum, P., and Graham, P. H. (2006). Rhizobium giardinii is the microsymbiont of Illinois Bundleflower (Desmanthus illinoensis (Michx.) Macmillan) in midwestern prairies. Can. J. Microbiol., 52, 903-907.

    PubMed  CAS  Google Scholar 

  • Beynon, J. L., and Josey, D. P. (1980). Demonstration of heterogeneity in a natural population of Rhizobium phaseoli using variation in intrinsic antibiotic resistance. J. Gen. Microbiol., 118, 437-442.

    Google Scholar 

  • Bhuvaneswari, T. V., Bhagwat, A. A., and Bauer, W. D. (1981). Transient susceptibility of root cells in four legumes to nodulation by rhizobia. Plant Physiol., 68, 1144-1149.

    PubMed  Google Scholar 

  • Bhuvaneswari, T. V., Turgeon, B. G., and Bauer, W. D (1980). Early events in the infection of soybean (Glycine max L. Merr.) by Rhizobium japonicum. I. Localization of infectible root cells.Plant Physiol., 66, 1027-1031.

    PubMed  Google Scholar 

  • Bieberdeck, V. O., Lupwayi, N. Z., Hanson, K. G., Rice, W. A., and Zentner, R. P. (2000). Effect of long-term rotation with lentils on rhizosphere ecology and on endophytic rhizobia in wheat. XVIIth North American Conference on Symbiotic Nitrogen Fixation, Quebec, Canada, p. 80.

    Google Scholar 

  • Biswas, J. C., Ladha, J. K., Dazzo, F. B., Yanni, Y. G., and Rolfe, B. G. (2000). Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J., 92, 880-886.

    Google Scholar 

  • Blumenthal, D. M., Jordan, N. R., and Russelle, M. P. (2003). Soil carbon addition controls weeds and facilitates prairie restoration. Ecol. Applic., 13, 605-615.

    Google Scholar 

  • Bobbink, R., Hornung, M., and Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol., 86, 717-738.

    CAS  Google Scholar 

  • Bohlool, B. B., and Schmidt, E. L. (1973). Persistence and competition aspects of Rhizobium japonicum observed in soil by immunofluorescence microscopy. Soil Sci. Soc. Am. J., 37, 561-564.

    Google Scholar 

  • Boivin, C., Ndoye, I., Lortet, G., Ndiaye, A., de Lajudie, P., and Dreyfus, B. (1997). The Sesbania root symbionts Sinorhizobium saheliand S. teranga bv sesbaniae can form stem nodules on Sesbania rostrata, although they are less adapted to stem nodulation than Azorhizobium caulinodans. Appl. Environ. Microbiol., 63, 1040-1047.

    CAS  Google Scholar 

  • Bordeleau, L. M., and Prevost, D. (1994). Nodulation and nitrogen fixation in extreme environments. Plant Soil, 161, 115-125.

    CAS  Google Scholar 

  • Brockwell, J., Pilka, A., and Holliday, R. A. (1991). Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in central New South Wales. Aust. J. Exp. Agric., 31, 211-219.

    Google Scholar 

  • Brye, K. R., Norman, J. M., and Gower, S .T. (2002). Assessing the progress of a tallgrass prairie restoration in Southern Wisconsin. Amer. Midl. Nat., 148, 218-235.

    Google Scholar 

  • Buendia-Claveria, A. M., Rodriguez-Navarro, D. N., Santamaria-Linaza, C., Ruiz-Sainz, J. E., and Temprano-Vera, F. (1994). Evaluation of the symbiotic properties of Rhizobium frediiin European soils. Syst. Appl. Microbiol., 17, 155-160.

    Google Scholar 

  • Burdman, S., Kigel, J., and Okon, Y. (1997). Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolis vulgaris L.). Soil Biol. Biochem., 29, 923-929.

    CAS  Google Scholar 

  • Burns, R. C., and Hardy. R. W. F. (1975). Nitrogen fixation in bacteria and higher plants. Berlin, Germany: Springer Verlag (189 pp.).

    Google Scholar 

  • Bushby, H. V. A. (1982). Ecology. In W. J. Broughton (Ed.), Nitrogen fixation Vol. 2: Rhizobium(pp 34-75). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Camacho, M., Santamaria, C., Temprano, F., Rodriguez-Navarro, D. N., Daza, A., Espuny, R., et al. (2002). Soils of the Chinese Hubei province show a very high diversity of Sinorhizobium frediistrains. Syst. Appl. Microbiol., 25, 592-602.

    PubMed  CAS  Google Scholar 

  • Chabot, R., Antoun, H., and Cescas, M. P. (1996). Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil, 184, 311-321.

    CAS  Google Scholar 

  • Chaintreuil, C., Giraud, E., Prin, Y., Lorquin, J., Ba, A., Gillis, M., et al. (2000). Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl. Environ. Microbiol., 66, 5437-5447.

    CAS  Google Scholar 

  • Chaverra, M. H., and Graham, P. H. (1992). Cultivar variation in traits affecting early nodulation of common bean. Crop Sci., 32, 1432-1436.

    Google Scholar 

  • Chen, L. S., Figueredo, A., Villani, H., Michajluk, J., and Hungria, M. (2002). Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biol. Fertil. Soils, 35, 448-457.

    CAS  Google Scholar 

  • Chen, W. M., James, E. K., Chou, J. H., Sheu, S. Y., Yang, S. Z., and Sprent, J. I. (2005). beta-Rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol., 168, 661-675.

    PubMed  CAS  Google Scholar 

  • Chen, W. M., Laevens, S., Lee, T. M., Coenye, T., de Vos, P., Mergeay, M., et al. (2001). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol., 51, 1729-1735.

    PubMed  CAS  Google Scholar 

  • Chen, W. M., Moulin, L., Bontemps, C., Vandamme, P., Bena, G., and Boivin-Masson, C. (2003). Legume symbiotic nitrogen fixation by beta proteobacteria is widespread in nature. J. Bacteriol., 185, 7266-7272.

    PubMed  CAS  Google Scholar 

  • Chen, W. X., Li, G. S., Qi, Y. L., Wang, E. T., Yuan, H. L., and Li, J .L. (1991). Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol., 41, 275-280.

    Google Scholar 

  • Chen, W. X., Tan, Z. Y., Gao, J. L., Li, Y., and Wang, E. T. (1997). Rhizobium hainanense sp. nov. isolated from tropical trees. Int. J. Syst. Bacteriol., 47, 870-873.

    PubMed  CAS  Google Scholar 

  • Chen, W. X., Wang, E. T., Wang, S. Y., Li, Y. B., Chen, X. Q., and Li, Y. (1995). Characteristics of Rhizobium tianshanense, sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int. J. Syst. Bacteriol., 45, 153-159.

    Google Scholar 

  • Chen, W. X., Yan, G. H., and Li, J. L. (1988). Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol., 38, 392-397.

    Google Scholar 

  • Cheng, Y., Howieson, J. G., O’Hara, G. W., Watkin, E. L. J., Souche, G., Jaillard, B., et al. (2004). Proton release by roots of Medicago murex and Medicago sativa growing in acidic conditions, and implications for rhizosphere pH changes and nodulation at low pH. Soil Biol. Biochem., 36, 1357-1365.

    CAS  Google Scholar 

  • Cheng, Y., Watkin, E. L. J., O’Hara, G. W., and Howieson, J. G. (2002). Medicago sativaand Medicago murexdiffer in the nodulation response to soil acidity. Plant Soil, 238, 31-39.

    CAS  Google Scholar 

  • Dakora, F. D., and Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil, 245, 35-47.

    CAS  Google Scholar 

  • Dangeard, P. A. (1926). Recherches sur les tubercules radicaux des legumineuses. Le Botaniste Series 16, Paris (270 pp.).

    Google Scholar 

  • Dart, P. J. (1977). Infection and development of leguminous nodules. In R. W. F. Hardy and W. S. Silver (Eds.) A Treatise on nitrogen fixation, Section 3: Biology (pp. 367-472). New York, NY: John Wiley and Sons.

    Google Scholar 

  • De Lajudie, P., Laurent-Fulele, E., Willems, A., Torck, U., Coopman, R., Collins, M. D., et al. (1998a). Allorhizobium undicola gen. nov., sp. nov., nitrogen fixing bacteria that efficiently nodulate Neptunia natansin Senegal. Int. J. Syst. Bacteriol., 48, 1277-1290.

    Google Scholar 

  • De Lajudie, P., Willems, A., Nick, G., Moreira, F., Molouba, F., Hoste, B., et al. (1998b). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int. J. Syst. Bacteriol., 48, 369-382.

    Google Scholar 

  • De Lajudie, P., Willems, A., Pot, B., Dewettinck, D., Maestrojuan, G., Neyra, M., et al. (1994). Polyphasic taxonomy of rhizobia: Emendation of the genus Sinorhizobiumand description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium terangasp. nov. Int. J. Syst. Bacteriol., 44, 715-733.

    Google Scholar 

  • Delannay, X., Rodgers, D. M., and Palmer, R .G. (1983). Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci., 23, 944-949.

    Google Scholar 

  • Denison, R. F., and Kiers, E. T. (2004). Lifestyle alternatives for rhizobia: Mutualism, parasitism and forgoing symbiosis. FEMS Microbiol. Lett., 237, 187-193.

    PubMed  CAS  Google Scholar 

  • Devine, T. E. (1984). Genetics and breeding of nitrogen fixation. In M. Alexander (Ed.) Biological nitrogen fixation. Ecology, technology and physiology(pp. 127-154). New York, NY: Plenum Press.

    Google Scholar 

  • Diatloff, A. (1969). The introduction of Rhizobium japonicumto soil by seed inoculation of non-host legumes and cereals. Aust. J. Exp. Agric. Anim. Husb., 9, 357-360.

    Google Scholar 

  • Dilworth, M. J., Carson, K. C., Giles, R. G. F., Byrne, L. T., and Glenn, A. R. (1998). Rhizobium leguminosarum bv viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. Microbiology, 144, 781-791.

    CAS  Google Scholar 

  • Dilworth, M. J., Howieson, J. G., Reeve, W. G., Tiwari, R. P., and Glenn, A. R. (2001). Acid tolerance in root nodule bcteria and selecting for it. Aust. J. Exp. Agric., 41, 435-446.

    CAS  Google Scholar 

  • Diouf, A., Lajudie, P., Neyra, M., Kersters, K., Gillis, M., Martinez-Romero, E., and Gueye, M. (2000). Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int. J. Syst. Evol. Microbiol., 50, 159-170

    PubMed  CAS  Google Scholar 

  • Dowdle, S. F., and Bohlool, B. B. (1985). Predominance of fast-growing Rhizobium japonicumin a soybean field in the People’s Republic of China. Appl. Environ. Microbiol., 50, 1171-1176.

    PubMed  Google Scholar 

  • Dreyfus, B., Garcia, J. L., and Gillis, M. (1988). Characterization of Azorhizobium caulinodans gen.nov., sp. nov. a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol., 38, 89-98.

    CAS  Google Scholar 

  • Drouin, P., Prevost, D., and Antoun, H. (2000). Physiological adaptation to low temperatures of strains of Rhizobium leguminosarumbvviciae associated with Lathyrus spp. FEMS Microbiol. Ecol., 32, 111-120.

    PubMed  CAS  Google Scholar 

  • Dunigan, E. P., Bollich, P. K., Hutchinson, R. L., Hicks, P. M., Zaunbrecher, F. C., et al. (1984). Introduction and survival of an inoculant strain of Rhizobium japonicum in soil. Agron. J.,76,463-466.

    Google Scholar 

  • Eaglesham, A. R. J., and Ayanaba, A. (1984). Tropical stress ecology of rhizobia, root nodulation and legume fixation. In N. S. Subba Rao (Ed.), Current developments in biological nitrogen fixation(pp. 1-35). London, UK: Edward Arnold Publishers.

    Google Scholar 

  • Eardly, B. D., Materon, L. A., Smith, N. H., Johnson, D. A., Rumbaugh, M. D., and Selander, R. K. (1990). Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl. Environ. Microbiol., 56, 187-194.

    PubMed  CAS  Google Scholar 

  • Eardly, B. D., Wang, F. S., Whittam, T. S., and Selander, R. K. (1995). Species limits in Rhizobiumpopulations that nodulate the common bean (Phaseolus vulgaris). Appl. Environ. Microbiol., 61, 507-512.

    PubMed  CAS  Google Scholar 

  • Eardly, B., and van Berkum, P. (2004). Use of population genetic structure to define species limits in the Rhizobiaceae. Symbiosis, 38, 109-122.

    Google Scholar 

  • Edmeades, G. O., McMaster, G. S., White, J. W., and Campos, H. (2004). Genomics and the physiologist: Bridging the gap between genes and crop response. Field Crops Res., 90, 5-18.

    Google Scholar 

  • Ek Jander, J., and Fahraeus, G. (1971). Adaptation of Rhizobium to subarctic environment in Scandinavia. Plant Soil, Spec. Vol., 129-137.

    Google Scholar 

  • Elliott, G. N., Chen, W. M., Chou, J-H., Wang, H-C., Sheu, S-Y, Perin, L., et al. (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosaspp. and fixes nitrogen ex planta. New Phytol., 173, 168-180.

    PubMed  CAS  Google Scholar 

  • El Sheikh, E. A. E. (1998). Effects of salt on rhizobia and bradyrhizobia: A review. Ann. Appl. Biol., 132, 507-524.

    Google Scholar 

  • Essalmani, H., and Lahlou, H. (2003). Bioprotection mechanisms of the lentil plant by Rhizobium leguminosarum against Fusarium oxysporumf. sp. lentis. C.R. Biol., 326, 1163-1173.

    PubMed  Google Scholar 

  • Estevez de Jensen, C., Kurle, J. E., Percich, J. A., and Graham, P. H. (2002). Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res., 74, 107-115.

    Google Scholar 

  • Ettema, C. H., and Wardle, D. A. (2002). Spatial soil ecology. Trends Ecol. Evol., 17, 177-183.

    Google Scholar 

  • Evans, J., Eberbach, P., Luckett, D., and Cormack S. (2001). Pre-season soil establishment of legume inoculant rhizobia is not effective for the nodulation of lupin and faba bean crops in acidic soils. Aust. J. Exp. Agric., 41, 1149-1160.

    Google Scholar 

  • Fahraeus, G., and Ljunggren, H. (1968). Pre-infection phases of the legume symbiosis. In T. R. G. Gray and D. Parkinson (Eds.), The Ecology of soil bacteria (pp. 396-421). Liverpool, UK: Liverpool University Press.

    Google Scholar 

  • Ferreira, M. C., Andrade, D. D., Chueire, L. M. D., Takemura, S. M., and Hungria, M. (2000). Tillage method and crop rotation effects on population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol. Biochem., 32, 627-637.

    CAS  Google Scholar 

  • Ferrey, M. L., Graham, P. H., and Russelle, M. P. (1994). Nodulation efficiency of Bradyrhizobium japonicumstrains with genotypes of soybean varying in the ability to restrict nodulation. Can. J. Microbiol., 40, 456-460.

    Google Scholar 

  • Firmin, J. L., Wilson, K. E., Carlson, R. W., Davies, A. E., and Downie, J. A. (1993). Resistance to nodulation of cv Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol. Microbiol., 10, 351-360.

    PubMed  CAS  Google Scholar 

  • Fray, R. G. (2002). Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann. Bot., 89, 245-253.

    PubMed  CAS  Google Scholar 

  • Fred, E. B., Baldwin, I. L., and McCoy, E. (1932). Root nodule bacteria and leguminous plants. Madison, WI: University of Wisconsin Press (332 pp.).

    Google Scholar 

  • Frey, S. D., and Blum, L. K. (1994). Effect of pH on competition for nodule occupancy by Type 1 and Type 11 strains of Rhizobium leguminosarum phaseoli. Plant Soil, 163, 157-164.

    CAS  Google Scholar 

  • Galli-Terasawa, L. V., Glienke-Blanco, C., and Hungria, M. (2003). Diversity of a soybean rhizobial population adapted to a Cerrados soil. World J. Microbiol. Biotechnol., 19, 933-939.

    CAS  Google Scholar 

  • Gao, J. L., Turner, S. L., Kan, F. L., Wang, E. T., Tan, Z. Y., Qui, Y. H., et al. (2004). Mesorhizobium septentrionale and Mesorhizobium temperatum isolated from Astralagus adsurgens growing in the northern regions of China. Int. J. Syst. Evol. Microbiol., 54, 2003-2012.

    PubMed  CAS  Google Scholar 

  • Gao, M., Teplitski, M., Robinson, J. B., and Bauer, W. D. (2003). Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant-Microbe Interact., 16, 827-834.

    PubMed  CAS  Google Scholar 

  • Garcia-Plazaola, J. I., Becerrril, J. M., Arrese-Igor, C., Gonzalez-Murua, C., and Aparicio-Tejo, P. M. (1993). The contribution of Rhizobium melilotito soil denitrification. Plant Soil, 157, 207-213.

    CAS  Google Scholar 

  • Geniaux, E., Laguerre, G., and Amarger, N. (1993). Comparison of geographically distant populations of Rhizobium isolated from root nodules of Phaseolus vulgaris. Mol. Ecol., 2, 295-302.

    Google Scholar 

  • Gepts, P. (1988a). Phaseolin as an evolutionary marker. In P. Gepts (Ed.), Genetic resources ofPhaseolusbeans(pp. 215-241). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Gepts, P. (1988b). A middle American and an Andean common-bean gene pool. In P. Gepts (Ed.), Genetic resources ofPhaseolusbeans(pp. 375-390). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Gibson, A. H., Date, R. A., Ireland, J. A., and Brockwell, J. (1976). A comparison of competitiveness and persistence among five strains of Rhizobium trifolii. Soil Biol. Biochem., 8, 395-401.

    Google Scholar 

  • Giller, K. E. (2001). Nitrogen fixation in tropical cropping systems. Wallingford, UK: CABI Publishing (423 pp.).

    Google Scholar 

  • Graham, P. H. (1973). Plant-Rhizobiuminteraction and its importance to agriculture. In A. M. Srb, (Ed.), Genes, enzymes and populations (pp. 321-330). New York, NY: Plenum Publishing.

    Google Scholar 

  • Graham, P. H. (1992). Stress tolerance in Rhizobiumand Bradyrhizobium, and nodulation under adverse soil conditions. Can. J. Microbiol., 38, 475-484.

    CAS  Google Scholar 

  • Graham, P. H., Ballen, K. G., Montealegre, C., Jones, R. H., Fischer, B., and Luque, E. (1999). Characterization of rhizobia associated with Dalea spp. in natural prairies and revegetation areas in Minnesota. In E. Martinez and G. Hernandez (Eds.) Highlights of nitrogen fixation (pp. 69-75). New York, NY: Kluwer Academic/Plenum Press.

    Google Scholar 

  • Graham, P. H., Draeger, K. J., Ferrey, M L., Conroy, M. J., Hammer, B. E., Martinez-Romero, E., et al. (1994). Acid pH tolerance in strains of Rhizobiumand Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR 1899. Can. J. Microbiol., 40, 198-207.

    CAS  Google Scholar 

  • Graham, P. H., and McDermott, T. R. (1989). Bradyrhizobium,root and rhizosphere interactions to improve soybean productivity. In R. D. Munson (Ed.), The Physiology, biochemistry, nutrition and bioengineering of soybeans: Implications for future management(pp. 1-21). St. Louis, MO: FAR/PPI.

    Google Scholar 

  • Graham, P. H., Rosas, J. C., Estevez de Jensen, C., Peralta, E., Tlusty, B., Acosta-Gallegas, J., et al. (2003). Addressing edaphic constraints to bean production: The bean/cowpea CRSP project in perspective. Field Crops Res., 82, 179-192.

    Google Scholar 

  • Graham, P. H., Sadowsky, M. J., Keyser, H. H., Barnet, M., Bradley, R. S. Cooper, J. E., et al. (1991). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int. J. Syst. Bacteriol., 41, 582-587.

    Google Scholar 

  • Graham, P. H., Viteri, S. E., Mackie, F., Vargas, A. T., and Palacios, A. (1982). Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res., 5, 121-128.

    Google Scholar 

  • Grange, L., and Hungria, M. (2004). Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil. Biol. Biochem., 36, 1389-1398.

    CAS  Google Scholar 

  • Grayston, S. J., Campbell, C. D., Bardgett, R. D., Mawdsley, J. L., Clegg, C. D., Ritz, K., et al. (2004). Assessing shifts in microbial community structure across a range of grasslands of different management intensity using CLPP, PLFA and community DNA techniques. Appl. Soil Ecol., 25, 63-84.

    Google Scholar 

  • Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D., and Bardgett, R. D. (2001). Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem., 33, 533-551.

    CAS  Google Scholar 

  • Griffiths, R. I., Manefield, M., Ostle, N., McNamara, N., O’Donnell, A. G., Bailey, M. J., et al. (2004).CO_2 ulse labeling of plants in tandem with stable isotope probing: Methodological considerations for examining microbial function in the rhizosphere. J. Microbiol. Meth., 58, 119-129.

    CAS  Google Scholar 

  • Gutierrez-Zamora, M. L., and Martinez-Romero, E. (2001). Natural endophytic association between Rhizobium etli and maize (Zea maysL.). J. Biotechnol., 91, 117-126.

    PubMed  CAS  Google Scholar 

  • Hafeez, F. Y., Safdar, M. E., Chaudhry, A. U., and Malik, K. A. (2004). Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Aust. J. Exp. Agric., 44, 617-622.

    Google Scholar 

  • Hagen, M. J., and Hamrick, J. L. (1996). Population level processes in Rhizobium leguminosarumbv trifolii: The role of founder effects. Mol. Ecol., 5, 707-714.

    Google Scholar 

  • Halder, A. K., and Chakrabartty, P. K. (1993). Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol., 38, 325-330.

    CAS  Google Scholar 

  • Handley, B. A., Hedges, A. J., and Beringer, J. E. (1998). Importance of host plants for detecting the population diversity of Rhizobium leguminosarumbiovarviciaein soil. Soil Biol. Biochem., 30, 241- 249.

    Google Scholar 

  • Hart, J. P., and Scarry, C. M. (1999). The age of common beans (Phaseolus vulgaris) in the Northeastern United States. American Antiquity, 64, 653-658.

    Google Scholar 

  • Herrera-Cervera, J. A., Caballero-Mellado, G., Laguerre, G., Tichy, H. V., Requena, N., Amarger, N., et al. (1999). At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol. Ecol., 30, 87-97.

    CAS  Google Scholar 

  • Hilali, A., Prevost, D., Broughton, W. J., and Antoun, H. (2001). Effects of inoculation with strains of Rhizobium leguminosarumbiovar trifolii on the growth of wheat in two different soils from Morocco. Can. J. Microbiol., 47, 590-593.

    PubMed  CAS  Google Scholar 

  • Hirsch, A. M., Bauer, W. D., Bird, D. M., Cullimore, J., Tyler, B., and Yoder, J. I. (2003). Molecular signals and receptors controlling rhizosphere interactions between plants and other organisms. Ecology, 84, 858-868.

    Google Scholar 

  • Hirsch, P. R., Jones, M. J., McGrath, S. P., and Giller, K. E. (1993). Heavy metals from past applications of sewage sludge decrease the genetic diversity of Rhizobium leguminosarumbiovartrifoliipopula-tions. Soil Biol. Biochem., 25, 1485-1490.

    Google Scholar 

  • Hoflich, G., Wiehe, W., and Hecht-Buchholz, C. (1995). Rhizosphere colonization of different crops with growth-promoting Pseudomonasand Rhizobium bacteria. Microbiol. Res., 150, 139-147.

    Google Scholar 

  • Hogg, B., Davies, A. E., Wilson, K. E., Bisseling, T., and Downie, J. A. (2002). Competitive nodulation blocking of cv Afghanistan pea is related to high levels of nodulation factors made by some strains of Rhizobium leguminosarum bv viciae. Mol. Plant-Microbe Interact., 15, 60-68.

    PubMed  CAS  Google Scholar 

  • Horner-Devine, M. C., Carney, K. M., and Bohannan, B. J. M. (2004). An ecological perspective on bacterial diversity. Proc. Roy. Soc. (London)B, 271, 113-122.

    Google Scholar 

  • Howieson, J., and Ballard, R. (2004). Optimizing the legume symbiosis in stressful and competitive environments within southern Australia - some contemporary thoughts. Soil Biol. Biochem., 36, 1261-1273.

    CAS  Google Scholar 

  • Howieson, J., and Ewing, M. A. (1986). Acid tolerance in the Rhizobium meliloti–Medicago symbiosis. Aust. J. Agric. Res., 37, 55-64.

    Google Scholar 

  • Howieson, J. G., O’Hara, G. W., and Carr, S. J. (2000). Changing roles for legumes in Meditteranean agriculture: Developments from an Australian perspective. Field Crops Res., 65, 107- 122.

    Google Scholar 

  • Hungria, M., Andrade, D. D., Chueire, L. M. D., Probanza, A., Guttierez-Manero, F. J., and Megias, M. (2000). Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem., 32, 1515-1528.

    CAS  Google Scholar 

  • Hungria, M., Andrade, D. D., Collozzi, A., and Balota, E. L. (1997). Interactions among soil organisms and bean and maize grown in monoculture or intercropped. Pesq. Agropec. Brasil, 32, 807-818.

    Google Scholar 

  • Hungria, M., Campo, R. J., and Mendes, I. C. (2003). Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropicistrains Biol. Fertil. Soils, 39, 88-93.

    Google Scholar 

  • Hungria, M., Campo, R. J., Mendes, I. C., and Graham, P. H. (2006a). Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics; the success of soybean (Glycine max L. Merr.) in South America. In R. P. Singh, N. Shankar, and P. K. Jaiwal (Eds.), Focus on plant agriculture. 1. Nitrogen nutrition in sustainable plant productivity(pp. 43-93). Houston, TX: Studium Press LLC.

    Google Scholar 

  • Hungria, M., Francini, J. C., Campo, R. J., and Graham, P. H. (2006b). The importance of nitrogen fixation to the soybean cropping in South America. In D. Werner and W. E. Newton (Eds.), Nitrogen fixation in agriculture, forestry, ecology, and the environment (pp. 25-42). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Hungria, M., and Vargas, M. A. T. (2000). Environmental factors affecting N_2fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res., 65, 151-164.

    Google Scholar 

  • Islam, F. M. A., Basford, K. E., Redden, R. J., Gonzalez, A. V., Kroonenberg, P. M., and Beebe, S. (2002). Genetic variability in cultivated common bean beyond the two major gene pools. Genet. Resour. Crop Evol., 49, 271-283.

    Google Scholar 

  • Jarvis, B. D. W., Pankhurst, C. E., and Patel, J. J. (1982). Rhizobium loti, a new species of root nodule bacteria. Int. J. Syst. Bacteriol., 32, 378-380.

    Google Scholar 

  • Jarvis, B. D. W., and Tighe, S. W. (1994). Rapid identification of Rhizobiumspecies based on cellular fatty acid analysis. Plant Soil, 161, 31-41.

    CAS  Google Scholar 

  • Jarvis, B. D. W., van Berkum, P., Chen, W. X., Nour, S. M., Ferndez, M. P., Cleyet-Marel, J. C., and Gillis, M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneumandRhizobium tianshanenseto Mesorhizobium gen. nov. Int. J. Syst. Bacteriol., 47, 895-898.

    Google Scholar 

  • Jordan, D. C. (1984). Family III. Rhizobiaceae Conn 1938. In N. R. Krieg and J. C. Holt (Eds.), Bergey’s manual of systematic bacteriology, Vol 1 (pp. 234-254). Baltimore, ND: Williams and Wilkins.

    Google Scholar 

  • Jourand, P., Giraud, E., Bèna, G., Sy, A., Willems, A., Gillis, M., et al. (2004). Methylobacterium nodulansnov. sp., for a group of aerobic, facultatively methylotrophic, legume root-nodule forming and nitrogen-fixing bacteria. Int. J. Syst. Evol. Microbiol., 54, 2269-2273.

    PubMed  CAS  Google Scholar 

  • Kaplan, L., and Lynch, T. F. (1999). Phaseolus(Fabaceae) in archaeology. AMS radiocarbon dates and their significance for pre-Colombian agriculture. Econ. Bot., 53, 261-272.

    Google Scholar 

  • Kent, A. D., and Triplett, E. W. (2002). Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol., 56, 211-236.

    Google Scholar 

  • Khalid, A., Arshad, M., and Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol., 96, 473-480.

    PubMed  CAS  Google Scholar 

  • Kiers, E. T., Rousseau, R. A., West, S. A., and Denison, R. F. (2003). Host sanctions and the legume-Rhizobium mutualism. Nature (Lond.), 425, 78-81.

    CAS  Google Scholar 

  • Kinzig, A. P., and Sokolow, R. H. (1994). Human impacts on the nitrogen cycle. Physics Today, 47, 24-31.

    Google Scholar 

  • Kipe-Nolt, J. A., and Giller, K. E. (1993). A field evaluation using the 15 N isotope dilution method of lines of Phaseolus vulgarisbred for increased nitrogen fixation. Plant Soil, 152, 107-114.

    Google Scholar 

  • Kurz, W. G. W., and LaRue, T. A. (1975). Nitrogenase activity in rhizobia in absence of plant host. Nature (Lond.), 256, 407-409.

    CAS  Google Scholar 

  • Kuykendall, L. D., Saxena, B., Devine, T. E., and Udell, S. E. (1993). Bradyrhizobium elkaniisp.nov. Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List No 45. Int. J. Syst. Bacteriol., 43, 398-399.

    Google Scholar 

  • Lagares, A., Caetano-Anolles, G., Niehaus, K., Lorenzen, J., Ljunggren, H. D., Pühler, A., and Favelukes, G. (1992). A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. J. Bacteriol., 174, 5941-5952.

    PubMed  CAS  Google Scholar 

  • Laguerre, G., Allard, M. R., Revoy, F., and Amarger, N. (1994). Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol., 60, 56-63.

    PubMed  CAS  Google Scholar 

  • Laguerre, G., Louvrier, P., Allard, M. R., and Amarger, N. (2003). Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarumbiovar viciae for nodulation of host legumes. Appl. Environ. Microbiol., 69, 2276-2283.

    PubMed  CAS  Google Scholar 

  • Lambert, G. R., Cantrell, M. A., Hanus, F. J., Russell, S. A., Haddad, K. R., and Evans, H .J. (1985). Intra- and interspecies transfer and expression of Rhizobium japonicum hydrogen uptake genes and autotrophic growth capability. Proc. Nat. Acad. Sci. USA, 82, 3232-3236.

    PubMed  CAS  Google Scholar 

  • Leibovitch, S., Migner, P., Zhang, F., and Smith, D. L. (2001). Evauation of the effect of Soyasignal technology on soybean yield (Glycine max(L.) Merr.) under field conditions over 6 years in Eastern Canada and the Northern United States. J. Agron. Crop Sci., 187, 281-292.

    CAS  Google Scholar 

  • Lepo, J. E., Hanus, F. J., and Evans, H. J. (1980). Chemoautotrophic growth of hydrogen uptake positive strains of Rhizobium japonicum. J. Bacteriol., 141, 664-670.

    PubMed  CAS  Google Scholar 

  • Leveau, J. H. J., and Lindow, S. E. (2002). Bioreporters in microbial ecology. Curr. Opin. Microbiol., 5, 259-265.

    PubMed  Google Scholar 

  • Lindstrom, K. (1989). Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol., 39, 365-367.

    Google Scholar 

  • Lodeiro, A. R., and Favelukes, G. (1999). Early interactions of Bradyrhizobium japonicumand soybean roots: Specificity in the process of adsorption. Soil Biol. Biochem., 31, 1405-1411.

    CAS  Google Scholar 

  • Lodwig, E. M., Hosie, A. H. F., Bourdes, A., Findlay, K., Allaway, D., Karunakaran, R., et al. (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature (Lond.), 422, 722-726.

    CAS  Google Scholar 

  • Loh, J. T., Yuen-Tsai, J. P., Stacey, M. G., Lohar, D., Welborn, A., and Stacey, G. (2001). Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol. Microbiol., 42, 37-46.

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia, S. L., Vasquez, T. E. E., Favelukes, G., and Lodeiro, A. R. (2002). Rhizobial position as a main determinant in the problem of competition for nodulation in soybean. Environ. Microbiol., 4, 216-224.

    PubMed  Google Scholar 

  • Lortet, G., Mear, N., Lorquin, J., Dreyfus, B., De Lajudie, P., Rosenberg, C., and Boivin, C. (1996). Nod-factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains - application to Sinorhizobium saheli, S. teranga,and Rhizobium sp. strains isolated from Acaciaand Sesbania. Mol. Plant-Microbe Interact., 9, 736-747.

    Google Scholar 

  • Lu, Y. H., Murase, J., Watanabe, A., Sugimoto, A., and Kimura, M. (2004). Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol. Ecol., 48, 179-186.

    CAS  Google Scholar 

  • Ludwig, W., Amann, R., Martinez-Romero, E., Schonhuber, W., Bauer, S., Neef, A., and Schliefer, K-H. (1998). rRNA based identification and detection systems for rhizobia and other bacteria. Plant Soil, 204, 1-19.

    CAS  Google Scholar 

  • Lupwayi, N. Z., Clayton, G. W., Hanson, K. G., Rice, W. A., and Biederbeck, V. O. (2004). Endophytic rhizobia in barley, wheat and canola roots. Can. J. Plant Sci., 84, 37-45.

    Google Scholar 

  • Lupwayi, N. Z., Stephens, P. M., and Noonan, M. J. (1996). Relationship between timing of infection and nodulation competitiveness of Rhizobium meliloti. Symbiosis, 21, 233-248.

    Google Scholar 

  • Marschner, P., Neumann, G., Kania, A., Weiskopf, L., and Lieberei, R. (2002). Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil, 246, 167-174.

    CAS  Google Scholar 

  • Martinez-Romero, E. (2003). Diversity of Rhizobium-Phaseolus vulgaris symbiosis: Overview and perspectives. Plant Soil, 252, 11-23.

    CAS  Google Scholar 

  • Martinez-Romero, E., Segovia, L., Mercante, F. M, Franco, A. A., Graham, P., and Pardo, M. A. (1991). Rhizobium tropici, a novel species nodulating Phaseolus vulgarisbeans and Leucaenasp trees. Int. J. Syst. Bacteriol., 41, 417-426.

    PubMed  CAS  Google Scholar 

  • Matiru, V. N., Jaffer, M. A., and Dakora, F. D. (2005). Rhizobial infection of African landraces of sorghum (Sorghum bicolor L.) and finger millet (Eleucine coracana L.) promotes plant growth and alters tissue nutrient concentration under axenic conditions. Symbiosis, 40, 7-15.

    CAS  Google Scholar 

  • McComb, J. A., Elliott, J., and Dilworth, M. J. (1975). Acetylene reduction by Rhizobiumin pure culture. Nature (Lond.), 256, 409-410.

    CAS  Google Scholar 

  • McDermott, T. R., and Graham, P. H. (1989). Bradyrhizobium japonicuminoculant mobility, nodule occupancy and acetylene reduction in the soybean root system. Appl. Environ. Microbiol., 55, 2493-2498.

    PubMed  CAS  Google Scholar 

  • McDermott, T. R., Graham, P. H., and Brandwein, D. H. (1987). Viability of Bradyrhizobium japonicumbacteroids. Arch. Microbiol., 148, 100-106.

    CAS  Google Scholar 

  • McInnes, A., Thies, J. E., Abbott, L. K., and Howieson, J. G. (2004). Structure and diversity among rhizobial strains, populations and communities: a review. Soil Biol. Biochem., 36, 1295-1308.

    CAS  Google Scholar 

  • Mendes, I. C., Hungria, M., and Vargas, M. A. T. (2004). Establishment of Bradyrhizobium japonicum and B. elkaniistrains in a Brazilian Cerrado oxisol.Biol. Fertil. Soils, 40, 28-35.

    Google Scholar 

  • Mhamdi, R., Laguerre, G., Aouani, M. E., Mars, M., and Amarger, N. (2002). Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol. Ecol., 41, 77-84.

    CAS  Google Scholar 

  • Michiels, J., Dombrecht, B., Vermeiren, N., Xi, C., Luyten, E., and Vanderleyden, J. (1998). Phaseolus vulgarisis a non-selective host for nodulation. FEMS Microbiol. Ecol., 26, 193-205.

    CAS  Google Scholar 

  • Michiels, J., Verreth, C., and Vanderleyden, J. (1994). Effects of temperature stress on bean-nodulating Rhizobium strains. Appl. Environ. Microbiol., 60, 1206-1212.

    PubMed  Google Scholar 

  • Miller, K. J., and Wood, J. M. (1996). Osmoadaptation by rhizosphere bacteria. Annu. Rev. Microbiol., 50, 101-136.

    PubMed  CAS  Google Scholar 

  • Modi, M., Shah, K. S., and Modi, V. V. (1985). Isolation and characterization of catechol-like siderophore from cowpea Rhizobium RA-1. Arch. Microbiol., 141, 156-158.

    CAS  Google Scholar 

  • Molla, A. H., Shamsuddin, Z. H., Halimi, M. S., Morziah, M., and Puteh, A.B. (2001). Potential for enhancement of root growth and nodulation of soybean coinoculated with Azospirillumand Bradyrhizobium in laboratory systems. Soil Biol. Biochem., 33, 457-463.

    CAS  Google Scholar 

  • Montealegre, C., and Graham, P.H. (1996). Preference in the nodulation of Phaseolus vulgaris cv RAB39. 2. Effect of delayed inoculation or low cell representation in the inoculant on nodule occupancy by Rhizobium tropici UMR1899. Can. J. Microbiol., 42, 844-850.

    CAS  Google Scholar 

  • Montealegre, C., Graham, P. H., and Kipe-Nolt, J. A. (1995). Preference in the nodulation of Phaseolus vulgaris cultivar RAB39. Can. J. Microbiol., 41, 992-998.

    CAS  Google Scholar 

  • Moreira, F. M. S., Cruz, L., Faria, S. M., Marsh, T., Martinez-Romero, E., et al.(2006). Azorhizobium doebereineraesp. nov. Microsymbiont of Sesbania virgata (Caz.) Pers. Syst. Appl. Microbiol.,29, 197-206.

    CAS  Google Scholar 

  • Mostasso, L., Mostasso, F. L., Dias, B. G., Vargas, M. A. T., and Hungria, M. (2002). Selection of bean (Phaseolus vulgarisL.) rhizobial strains for the Brazilian Cerrados. Field Crops Res., 73, 121-132.

    Google Scholar 

  • Moulin, L., Munive, A., Dreyfus, B., and Boivin-Masson, C. (2001). Nodulation of legumes by members of the β subclass of Proteobacteria. Nature (Lond.), 411, 948-950.

    Google Scholar 

  • Mpepereki, S., Javaheri, F., Davis, P., and Giller, K. E. (2000). Soyabeans and sustainable agriculture. Promiscuous soyabeans in southern Africa. Field Crops Res., 65, 137-149.

    Google Scholar 

  • Muller, J., Boller, T., and Wiemken, A. (2001). Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules. J. Exp. Bot., 52, 943-947.

    PubMed  CAS  Google Scholar 

  • Mutch, L. A., and Young, J. P. W. (2004). Diversity and specificity of Rhizobium leguminosarumbiovar viciae on wild and cultivated legumes. Mol. Ecol., 13, 2435-2444.

    PubMed  CAS  Google Scholar 

  • Nandasena, K. G. (2005). Rapid evolution of diversity in the root nodule bacteria of Biserrula pelecinus L. Ph.D. thesis, Murdoch University, Western Australia.

    Google Scholar 

  • Narberhaus, F., Weiglhofer, W., Fischer, H. M., and Hennecke, H. (1998). Identification of the Bradyrhizobium japonicum degP gene as part of an operon containing small heat-shock protein genes. Arch. Microbiol., 169, 89-97.

    PubMed  CAS  Google Scholar 

  • Nick, G., de Lajudie, P., Eardly, B. D., Suomalainen, S., Paulin, L., Zhang, X. P., et al. (1999). Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov. isolated from leguminous trees in Sudan and Kenya. Int. J. Syst. Bacteriol., 49, 1359-1368.

    PubMed  CAS  Google Scholar 

  • Nour, S. M., Fernandez, M. P., Normand, P., and Cleyet-Marel, J. C. (1994). Rhizobium cicerisp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol., 44, 511-522.

    PubMed  CAS  Google Scholar 

  • Nour, S. M., Cleyet-Marel, J. C., Normand, P., and Fernandez, M. P., (1995). Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int. J. Syst. Bacteriol., 45, 640-648.

    PubMed  CAS  Google Scholar 

  • Nutman, P. S. (1962). The relation between root hair infection by Rhizobium and nodulation in Trifoliumand Vicia. Proc. Roy. Soc. (London)B, 156, 122-137.

    Google Scholar 

  • Ogasawara, M., Suzuki, T., Mutoh, I., Annapurna, K., Arora, N. K., Nishimura, Y., and Maheshwari, D. K. (2003). Sinorhizobium indiaensesp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis, 34, 53-68.

    Google Scholar 

  • Oger, P. M., Mansouri, H., Nesme, X., and Dessaux, Y. (2004). Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microbiol. Ecol., 47, 96-103.

    CAS  Google Scholar 

  • O’Hara, G. W. (2001). Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: A review. Aust. J. Exp. Agric., 41, 417-433.

    CAS  Google Scholar 

  • Oldroyd, G. E. D., and Downie, J. A. (2004). Calcium, kinases and nodulation signalling in legumes. Nat. Rev. Mol. Cell. Biol., 5, 566-576.

    PubMed  CAS  Google Scholar 

  • Ono, Y., Mitsui, H., Sato, T., and Minamisawa, K. (2001). Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Mol. Gen. Genet., 264, 902-912.

    CAS  Google Scholar 

  • Pagan, J. D., Child, J. J., Scowcroft, W. R., and Gibson, A. H. (1975). Nitrogen fixation by Rhizobium cultured on a defined medium. Nature (Lond.), 256, 406-407.

    CAS  Google Scholar 

  • Parker, C. A., Trinick, M. J., and Chatel, D. L. (1977). Rhizobia as soil and rhizosphere inhabitants. In R. W. F. Hardy and A. H. Gibson (Eds.), A Treatise on dinitrogen fixation. IV. Agronomy and ecology (pp. 311-352). New York, NY: John Wiley and Sons.

    Google Scholar 

  • Parniske, M., and Downie, J. A. (2003). Locks, keys and symbioses. Nature (Lond.), 425, 569-570.

    CAS  Google Scholar 

  • Pearson, H. L., and Vitousek, P. M. (2001). Stand dynamics, nitrogen accumulations, and symbiotic nitrogen fixation in regenerating stands of Acacia koa. Ecol. Appl., 11, 1381-1394.

    Google Scholar 

  • Peng, S. B., Biswas, J. C., Ladha, J. K., Gyaneshwar, P., and Chen, Y. Z. (2002). Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron. J., 94, 925-929.

    Google Scholar 

  • Perez-Ramirez, N. O., Rogel, M. A., Wang, E., Castellanos, J. Z., and Martinez-Romero, E. (1998). Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol. Ecol., 26, 289-296.

    CAS  Google Scholar 

  • Perrine, F. M., Rolfe, B. G., Hynes, M. F., and Hocart, C. H. (2004). Gas chromatography-mass spectrometry analysis of indoleacetic acid and tryptophan following aqueous chloroformate derivitisation of Rhizobiumexudates. Plant Physiol. Biochem., 42, 723-729.

    PubMed  CAS  Google Scholar 

  • Persello-Cartieaux, F., Nussaume, L., and Robaglia, C. (2003). Tales from the underground: Molecular plant rhizobacteria interactions. Plant Cell Environ., 26, 189-199.

    CAS  Google Scholar 

  • Pinero, D., Martinez, E., and Selander, R. K. (1988). Genetic diversity and relationships among isolates of Rhizobium leguminosarumbiovar phaseoli. Appl. Environ. Microbiol., 54, 2825-2832.

    PubMed  CAS  Google Scholar 

  • Polcyn, W., and Lucinski, R. (2003). Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobiumsp. (Lupinus). FEMS Microbiol. Lett., 226, 331-337.

    PubMed  CAS  Google Scholar 

  • Prevost, D., Drouin, P., Laberge, S., Bertrand, A., Cloutier, J., and Levesque, G. (2003). Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can. J. Bot., 81, 1153-1161.

    CAS  Google Scholar 

  • Probst, A. H., and Judd, R. W. (1973). Origin, U.S. history and development, and world distribution. In B. E. Caldwell and R. W. Howell (Eds.), Soybeans: Improvement, production and use (pp. 1-15). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Pulver, E. L., Brockman, F., and Wein, H. C. (1982). Nodulation of soyabean cultivars with Rhizobiumspp. and their response to inoculation withRhizobium japonicum. Crop Sci., 22, 1065-1070.

    Google Scholar 

  • Purchase, H. F., and Vincent, J. M. (1949). A detailed study of the field distribution of strains of clover nodule bacteria. Proc. Linn. Soc. NSW, 74, 227-236.

    Google Scholar 

  • Purchase, H. F., Vincent, J. M., and Ward, L. M. (1951). The field distribution of strains of nodule bacteria from species of Medicago. Aust. J. Agric. Res., 2, 261-272.

    Google Scholar 

  • Radutoiu, S., Madsen, L. H., Madsen, E. B., Felle, H. H., Umehara, Y., Grønlund, M., et al. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature (Lond.), 425, 585-592.

    CAS  Google Scholar 

  • Reynolds, H. L., Packer, A., Bever, J. D., and Clay, K. (2003). Grassroots ecology: Plant-microbe soil interactions as drivers of plant community structure and dynamics. Ecology, 84, 2281-2291.

    Google Scholar 

  • Richardson, A. E., and Simpson, R. J. (1988). Enumeration and distribution of Rhizobium trifolii under a subterranean clover-based pasture growing in an acid soil. Soil Biol. Biochem., 20, 431-438.

    Google Scholar 

  • Richardson, A. E., and Simpson, R. J. (1989). Acid tolerance and symbiotic effectiveness of Rhizobium trifolii associated with a Trifolium subterraneum L. based pasture growing in acid soil. Soil Biol. Biochem., 21, 87-95.

    Google Scholar 

  • Rioux, C. R., Jordan, C. L., and Rattray, J. B. M. (1986). Anthranilate-promoted iron uptake in Rhizobium leguminosarum. Arch. Biochem. Biophys., 248, 183-189.

    CAS  Google Scholar 

  • Rivas, R., Willems, A, Subba-Rao, N. S., Mateos, P. F., Dazzo, F. B., Kroppenstedt, R. M., et al. (2003). Description of Devosia neptuniaesp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst. Appl. Microbiol., 26, 47-53.

    PubMed  CAS  Google Scholar 

  • Robleto, E. A., Borneman, J., and Triplett, E. W. (1998). Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture independent perspective. Appl. Environ. Microbiol., 64, 5020-5022.

    PubMed  CAS  Google Scholar 

  • Roddam, L. F., Lewis-Henderson, W. R., and Djordjevic, M. A. (2002). Two novel chromosomal loci influence cultivar-specific nodulation failure in the interaction between strain ANU794 and subterranean clover cv. Woogenellup. Funct. Plant Biol., 29, 473-483.

    CAS  Google Scholar 

  • Rodelas, B., Lithgow, J. K., Wisniewski-Dye, F., Hardman, A., Wilkinson, A., Economou, A., et al. (1999). Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv viciae. J. Bacteriol., 181, 3816-3823.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro, D. N., Buendia, A. M., Camacho, M., Lucas, M. M., and Santamaria, C. (2000). Characterization of Rhizobiumspp. bean isolates from south-west Spain. Soil Biol. Biochem., 32, 1601-1613.

    CAS  Google Scholar 

  • Rome, S., Fernandez, M. P., Brunel, B, Normand, P., and Cleyet-Marel, J. C. (1996). Sinorhizobium medicae sp. nov. isolated from annual Medicago spp. Int. J. Syst. Bacteriol., 46, 972-980.

    PubMed  CAS  Google Scholar 

  • Rosas, J. C., Castro, J. A., Robleto, E. A., and Handelsman, J. (1998). A method for screening Phaseolus vulgaris L. germplasm for preferential nodulation with a selected Rhizobium etli strain. Plant Soil, 203, 71-78.

    CAS  Google Scholar 

  • Rosen, A., and Ljunggren, H. (1996). Denitrification by Rhizobium meliloti 2. Field and laboratory studies with soil. Swed. J. Agric. Res., 26, 153-160.

    Google Scholar 

  • Rosenblueth, M., and Martinez-Romero, E. (2004). Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol., 181, 337-344.

    PubMed  CAS  Google Scholar 

  • Sahlman, K. (1963). An electron microscope study of root-hair infection by rhizobium. J. Gen. Microbiol., 33, 425-427.

    PubMed  CAS  Google Scholar 

  • Sanginga, N., Abaidoo, R., Dashiell, K., Carsky, R. J., and Okogum, A. (1996). Persistence and effectiveness of rhizobia nodulating promiscuous soybeans in moist savanna zones of Nigeria. Appl. Soil Ecol., 3, 215-224.

    Google Scholar 

  • Santos, M. A., Vargas, M. A. T., and Hungria, M. (1999). Characterization of soybean Bradyrhizobium strains adapted to the Brazilian savannas. FEMS Microbiol. Ecol., 30, 261-272.

    PubMed  CAS  Google Scholar 

  • Sawada, H., Kuykendall, L. D., and Young, J. M. (2003). Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J. Gen. Appl. Microbiol., 49, 155-179.

    PubMed  CAS  Google Scholar 

  • Schallmach, E., Minz, D., and Jurkevitch, E. (2000). Culture independent detection of changes in root-associated bacterial populations of common bean (Phaseolus vulgaris L.) following nitrogen depletion. Microb. Ecol., 40, 309-316.

    PubMed  CAS  Google Scholar 

  • Schloter, M., Wiehe, W., Assmus, B., Steindl, H., Becke, H., Hoflich, G., and Hartmann, A. (1997). Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv trifolii R39 studied with monospecific polyclonal antisera. Appl. Environ. Microbiol., 63, 2038-2046.

    PubMed  CAS  Google Scholar 

  • Schmidt, E. L., and Robert, F. M. (1985). Recent advances in the ecology of Rhizobium. In H. J. Evans, P. J. Bottomley, and W.E. Newton (Eds.), Nitrogen fixation research progress (pp. 379-385). Dordrecht, The Netherlands: Martinus Nijhoff Publishers.

    Google Scholar 

  • Scholla, M. H., and Elkan, G. H. (1984). Rhizobium fredii sp. nov., a fast growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol., 34, 484-486.

    Google Scholar 

  • Schwinghamer, E. A. (1971). Antagonism between strains of Rhizobium trifolii in culture. Soil Biol. Biochem., 3, 355-363.

    Google Scholar 

  • Segovia, L., Pinero, D., Palacios, R., and Martinez-Romero, E. (1991). Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl. Environ. Microbiol., 57, 426-433.

    CAS  Google Scholar 

  • Segovia, L., Young, J. P. W., and Martinez-Romero, E. (1993). Reclassification of American Rhizobium leguminosarumbiovar phaseoli type 1 strains as Rhizobium etlisp. nov . Int. J. Syst. Bacteriol., 43, 374-377.

    PubMed  CAS  Google Scholar 

  • Sessitsch, A., Howieson, J. G., Perret, X., Antoun, H., and Martinez-Romero, E. (2002). Advances in Rhizobiumresearch. Crit. Rev. Plant Sci., 21, 323-378.

    CAS  Google Scholar 

  • Silva, C., Vinuesa, P., Eguiarte, L. E., Martinez-Romero, E., and Sousa, V. (2003). Rhizobium etliand Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: Population genetics and biogeographic implications. Appl. Environ. Microbiol., 69, 884-893.

    PubMed  CAS  Google Scholar 

  • Silva, C., Vinuesa, P., Eguiarte, L. E., Sousa, V., and Martìnez-Romero, E. (2005). Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol. Ecol., 14, 4033-4050.

    PubMed  CAS  Google Scholar 

  • Singh, S. P., Nodari, R., and Gepts, P. (1991). Genetic diversity in cultivated common bean. 1. Allozymes. Crop Sci., 31, 19-23.

    CAS  Google Scholar 

  • Slattery, J. F., Coventry, D. R., and Slattery, W. J. (2001). Rhizobial ecology as affected by the soil environment. Aust. J. Exp. Agric., 41, 289-298.

    CAS  Google Scholar 

  • Slattery, J. F., Pearce, D. J., and Slattery, W. J. (2004). Effects of resident rhizobial communities and soil type on the effective nodulation of pulse legumes. Soil Biol. Biochem., 36, 1339-1346.

    CAS  Google Scholar 

  • Smart, J. B., Dilworth, M. J., and Robson, A. D. (1984). Effect of phosphorus supply on phosphorus uptake and alkaline phosphatase in rhizobia. Arch. Microbiol., 140, 281-286.

    CAS  Google Scholar 

  • Smartt, J., and Hymowitz, T. (1985). Domestication and evolution of grain legumes. In R. J. Summerfield and E. H. Roberts (Eds.), Grain legume crops(pp. 32-72). London, UK: Collins.

    Google Scholar 

  • Smil, V. (1999). Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycle, 13, 647-662.

    CAS  Google Scholar 

  • So, R. B., Ladha, J. K., and Young, J. P. W. (1994). Photosynthetic symbionts of Aeschynomene spp. form a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Int. J. Syst. Bacteriol., 44, 392-403.

    PubMed  CAS  Google Scholar 

  • Souza, V., Eguiarte, L., Avila, G., Cappello, R., Gallardo, C., Montoya, J., and Pinero, D. (1994). Genetic structure of Rhizobium etlibiovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgarisand Phaseolus coccineus) in Morelos, Mexico. Appl. Environ. Microbiol., 60, 1260-1268.

    PubMed  Google Scholar 

  • Spehar, C. R. (1995). Impact of strategic genes in soybean on agricultural development in the Brazilian tropical savannahs. Field Crops Res., 41, 141-146.

    Google Scholar 

  • Squartini, A., Struffi, P., Doring, H., Selenska-Pobell, S., Tola, E., Giacomini, A., et al. (2002). Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root nodule microsymbiont of Hedysarum coronarium. Int. J. Syst. Evol. Microbiol., 52, 1267-1276.

    CAS  Google Scholar 

  • Stephens, P. M., and Cooper, J. E. (1988). Variation in speed of infection of "no root hair zone" of white clover and nodulating competitiveness among strains of Rhizobium trifolii. Soil Biol. Biochem., 20, 465-476.

    Google Scholar 

  • Stepkowski, T., Moulin, L., Krzyzanska, A., McInnes, A., Law, I. J., and Howieson, J. (2005). European origin of Bradyrhizobiumpopulations infecting lupins and serradella in soils of Western Australia. Appl. Environ. Microbiol.,71,7041-7052.

    PubMed  CAS  Google Scholar 

  • Streeter, J. G. (2003). Effect of trehalose on survival of Bradyrhizobium japonicumduring desiccation. J. Appl. Microbiol., 95, 484-491.

    PubMed  CAS  Google Scholar 

  • Streit, W., Botero, L., Werner, D., and Beck, D. (1995). Competition for nodule occupancy on Phaseolus vulgaris by Rhizobium etli and Rhizobium tropicistrains can be efficiently monitored in an ultisol during the early stages of growth using a constitutive gus-gene fusion. Soil Biol. Biochem., 27, 1075-1081.

    CAS  Google Scholar 

  • Summers, M. L., Elkins, J. G., Elliott, B. A., and McDermott, T. R. (1998). Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti. Mol. Plant-Microbe Interact., 11, 1094-1101.

    CAS  Google Scholar 

  • Sutton, W. D. (1983). Nodule development and senescence. In W. J. Broughton (Ed.), Nitrogen fixation, Vol. 3, Legumes (pp. 144-212). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., de Lajudie P., et al. (2001). Methylotrophic Methylobacteriumbacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol., 183, 214-220.

    PubMed  CAS  Google Scholar 

  • Tan, Z. Y., Kan, F. L., Peng, G. X., Wang, E. T., Reinhold-Hurek, B., and Chen, W. X. (2001). Rhizobium yanglingense sp. nov. isolated from arid and semi-arid regions in China. Int. J. Syst. Evol. Microbiol., 51, 909-914.

    PubMed  CAS  Google Scholar 

  • Tan, Z. Y., Xu, X. D., Wang, E. T., Gao, J. L., Martìnez-Romero, E., and Chen, W. X. (1997). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int. J. Syst. Bacteriol., 47, 874-879.

    PubMed  CAS  Google Scholar 

  • Teplitski, M., Robinson, J. B., and Bauer, W. D. (2000). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact., 13, 637-648.

    PubMed  CAS  Google Scholar 

  • Tesfaye, M., Dufault, N. S., Dornbusch, M. R., Allan, D. L., Vance, C. P., and Samac, D. A. (2003). Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol. Biochem., 35, 1103-1113.

    CAS  Google Scholar 

  • Thies, J., Holmes, E. M., and Vachot, A. (2001). Application of molecular techniques to studies in Rhizobium ecology: A review. Aust. J. Exp. Agric., 41, 299-319.

    CAS  Google Scholar 

  • Thies, J. E., Woomer, P. L., and Singleton, P. W. (1995). Enrichment of Bradyrhizobiumspp. populations in soil due to cropping of the homologous host legume. Soil Biol. Biochem., 27, 633-636.

    CAS  Google Scholar 

  • Thompson, J. N. (1998). Rapid evolution as an ecological process. Trends Ecol. Evol., 13, 329-332.

    Google Scholar 

  • Tighe, S. W., de Lajudie, P., Dipietro, K., Lindstrom, K., Nick, G., and Jarvis, B. D. W. (2000). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int. J. Syst. Evol. Microbiol., 50, 787- 801.

    PubMed  CAS  Google Scholar 

  • Tlusty, B., van Berkum, P., and Graham, P. H. (2005). Characteristics of the rhizobia associated with Dalea spp. in the Ordway, Kellogg-Weaver Dunes and Hayden prairies. Can. J. Microbiol., 51, 15-23.

    PubMed  CAS  Google Scholar 

  • Tohme, J., Gonzalez, D. O., Beebe, S., and Duque, M. C. (1996). AFLP analysis of gene pools of a wild bean core collection. Crop Sci., 36, 1375-1384.

    CAS  Google Scholar 

  • Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., et al. (2002). Novel plant microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol., 68, 2161-2171.

    PubMed  CAS  Google Scholar 

  • Toledo, I., Lloret, L., and Martinez-Romero, E. (2003). Sinorhizobium americanussp. nov., a new Sinorhizobiumspecies nodulating native Acacia spp. in Mexico. Syst. Appl. Microbiol., 26, 54-64.

    PubMed  CAS  Google Scholar 

  • Treonis, A. M., Ostle, N. J., Stott, A. W., Primrose, R., Grayston, S. J., and Ineson, P. (2004). Identification of groups of metabolically active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol. Biochem., 36, 533-537.

    CAS  Google Scholar 

  • Trinick, M. J. (1982). Biology. In W. J. Broughton (Ed.) Nitrogen fixation, Vol. 2, Rhizobium(pp. 76-146). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Triplett, E. W. (1988). Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarumbvtrifolii T24. Proc. Nat. Acad. Sci. USA, 85, 3810-3814.

    PubMed  Google Scholar 

  • Trujillo, M. E., Willems, A., Abril, A., Planchuelo, A. M., et al. (2005). Nodulation of Lupinus albus by strains of Ochrobactrum lupininov. sp. Appl. Environ. Microbiol., 71, 1318-1327.

    PubMed  CAS  Google Scholar 

  • Valverde, A., Velàsquez, E., Fernàndez-Santos, F., Vizcaìno, N., Rivas, R., Mateos, P. F., et al. (2005). Phyllobacterium trifoliisp. nov. nodulating Trifolium and Lupinus in Spanish soils. Int. J. Syst. Evol. Microbiol., 55, 1985-1989.

    Google Scholar 

  • van Berkum, P. B., and Eardly, B. D. (1998). Molecular evolutionary systematics of the Rhizobiaceae. In H. P. Spaink, A. Kondorosi, and P. J. J. Hooykaas (Eds.), The Rhizobiaceae. Molecular biology of model plant associated bacteria (pp. 1-24). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • van Berkum, P., and Eardly, B. D. (2002) The aquatic budding bacterium Blastobacter denitrificansis a nitrogen-fixing symbiont of Aeschynomene indica. Appl. Environ. Microbiol., 68, 1132-1136.

    PubMed  Google Scholar 

  • van Berkum, P., Beyene, D., Bao, G., Campbell, T. A., and Eardly, B. D. (1998). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int. J. Syst. Bacteriol., 48, 13-22.

    PubMed  Google Scholar 

  • van Berkum, P., Leibold, J. M., and Eardly, B. D. (2006). Proposal for combining Bradyrhizobiumspp. (Aeschynomene indica) with Blastobacter denitrificans and to transfer Blastobacter denitrificans (Hirsch and Muller, 1985) to the genus Bradyrhizobium as Bradyrhizobium denitrificans (comb. nov.). Syst. Appl. Microbiol.,29, 207-215.

    PubMed  Google Scholar 

  • van Berkum, P., Terefework, Z., Paulin, L., Suomalainen, S., Lindstrom, K., and Eardly, B. D. (2003). Discordant phylogenies within the rrn loci of rhizobia. J. Bacteriol., 185, 2988-2998.

    PubMed  Google Scholar 

  • Vandamme, P., Goris, J., Chen, W. M., de Vos, P., and Willems, A. (2002). Burkholderia tuberum sp. nov. and Burkholderia phymatumsp. nov., nodulate the roots of tropical legumes. Syst. Appl. Microbiol., 25, 507-512.

    PubMed  Google Scholar 

  • Vandenkoornhuyse, P., Ridgway, K. P., Watson, I. J., Fitter, A. H., and Young, J. P. W. (2003). Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol. Ecol., 12, 3085-3095

    PubMed  CAS  Google Scholar 

  • van Egerat, A. W. S. M. (1975). Changes in free ninhydrin positive compounds of young pea plants as affected by different nutritional and environmental conditions. Plant Soil, 42, 15-36.

    Google Scholar 

  • van Rossum, D., Muyotcha, A., van Verseveld, H. W., Stouthamer, A. H., and Boogerd, F. C. (1994). Siderophore production by Bradyrhizobium spp. strains nodulating groundnut. Plant Soil, 163, 177-187.

    Google Scholar 

  • Vargas, A. A. T., and Graham, P. H. (1988). Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Res., 19, 91-101.

    Google Scholar 

  • Vargas, A. A. T., and Graham, P. H. (1989). Cultivar and pH effects on competition for nodule sites between isolates of Rhizobiumin beans. Plant Soil, 117, 195-200.

    Google Scholar 

  • Velasquez, E., Igual, J. M., Willems, A., Fernandez, M. P., Munoz, E., Mateos, P. F., et al. (2001). Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis albain the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol., 51, 1011-1021.

    Google Scholar 

  • Veneklaas, E. J., Stevens, J., Cawthray, G. R., Turner, S., Grigg, A. M., and Lambers, H. (2003). Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil, 248, 187-197.

    CAS  Google Scholar 

  • Versalovic, J., Schneider, M., de Bruijn, F. J., and Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Meth. Mol. Cell Biol., 5, 25-40.

    CAS  Google Scholar 

  • Villacieros, M., Power, B., Sànchez-Contreras, M., Lloret, J., Roke, I., Orezabal, M. M., et al. (2003). Colonization behaviour of Pseudomonas fluorescensand Sinorhizobium melilotiin the alfalfa (Medicago sativa) rhizosphere. Plant Soil, 251, 47-54.

    CAS  Google Scholar 

  • Vincent, J. M. (1977). Rhizobium: General microbiology. In R. W. F.Hardy and W. S. Silver (Eds.), A Treatise on dinitrogen fixation, Section 3, Biology (pp. 277-366). New York, NY: John Wiley and Sons.

    Google Scholar 

  • Vinuesa, P., Leon-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Perez-Galdona, R., et al. (2005a). Bradyrhizobium canariensesp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genistae) from the Canary Islands, along with Bradyrhizobium japonicumbv. Genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int. J. Syst. Evol. Microbiol.., 55, 569-575.

    CAS  Google Scholar 

  • Vinuesa, P., Neumann-Silkow, F., Pacios-Bras, C., Spaink, H. P., Martinez-Romero, E., and Werner, D. (2003). Genetic analysis of a pH-regulated operon from Rhizobium tropiciCIAT899 involved in acid tolerance and nodulation competitiveness. Mol. Plant-Microbe Interact., 16, 159-168.

    PubMed  CAS  Google Scholar 

  • Vinuesa, P., and Silva, C. (2004). Thirteen species delineation and biogeography of symbiotic bacteria associated with cultivated and wild legumes. In D. Werner (Ed.), Biological resources and migration (pp. 143-155). Berlin, Germany: Springer.

    Google Scholar 

  • Vinuesa, P., Silva, C., Werner, D., and Martinez-Romero, E. (2005b). Population genetics and phylogenetic inference in bacterial molecular systematics: The role of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogen. Evol., 34, 29-54.

    CAS  Google Scholar 

  • Vlassak, K. M., Mercante, F., Straliotto, R., Franco, A., Vuylsteke, M., and Vanderleyden, J. (1997). Evaluation of the intrinsic competitiveness and saprophytic competence of Rhizobium tropiciIIB strains. Biol. Fertil. Soils, 24, 274-282.

    Google Scholar 

  • Voss, M., Jardim Freire, J. R., and Selbach, P. A. (1984). Efeito de niveis de calcario no solo e na capacidade de competicao de estirpes. Pesq. Agropec. Bras., 19, 433-439.

    Google Scholar 

  • Wang, E. T., Rogel, M. A., Sui, X. H., Chen, W. X., Martinez-Romero, E., and van Berkum, P. (2002a) Mesorhizobium amorphae, a rhizobial species that nodulates Amorpha fruticosa,is native to American soils. Arch. Microbiol., 178, 301-305.

    CAS  Google Scholar 

  • Wang, E. T., Tan, Z. Y., Willems, A. Y., Fernandez-Lopez, M., Reinhold-Hurek, B., and Martinez-Romero, E. (2002b). Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int. J., Syst. Evol. Microbiol., 52, 1687-1693.

    CAS  Google Scholar 

  • Wang, E. T., van Berkum, P., Beyene, D., Sui, X. H., Dorado, O., Chen, W. X., and Martinez-Romero, E. (1998). Rhizobium huautlense sp. nov., a symbiont of Sesbania herbaceathat has a close phylogenetic relationship withRhizobium galegae. Int. J. Syst. Bacteriol., 48, 687-699.

    PubMed  CAS  Google Scholar 

  • Wang, E. T., van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X., and Martinez-Romero, E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J. Syst. Bacteriol., 49, 51-65.

    PubMed  Google Scholar 

  • Wardle, D. A. (2002). Communities and ecosystems: Linking the aboveground and belowground components. Princeton, NJ: Princeton University Press (392 pp.).

    Google Scholar 

  • Wei, G. H., Tan, Z. Y., Zhu, M. E., Wang, E. T., Han, S. Z., and Chen, W. X. (2003). Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedezagrown in the Loess Plateau of China and description of Rhizobium loessensesp. nov. Int. J. Syst. Evol. Microbiol., 53, 1575-1583.

    PubMed  CAS  Google Scholar 

  • Wei, G. H., Wang, E. T., Tan, Z. Y., Zhu, M. E., and Chen, W. X. (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigoferaspp. andKummerowia stipulacea. Int. J. Syst. Evol. Microbiol., 52, 2231-2239.

    PubMed  CAS  Google Scholar 

  • Weiss, S. B. (1999). Cars, cows, and checkerspot butterflies: Nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conserv. Biol., 13, 1476-1486.

    Google Scholar 

  • West, S. A., Kiers, E. T., Pen, I., and Denison, R. F. (2002). Sanctions and mutualism stability: When should less beneficial mutualists be tolerated. J. Evol. Biol., 15, 830-837.

    Google Scholar 

  • Willems, A., Fernadez-Lopez, M., Munoz-Adelantado, E., Goris, J., de Vos, P., Martinez-Romero, E., et al. (2003). Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerensCasida 1982 to Sinorhizobiumas Sinorhizobium adhaerenscomb. nov. Request for an opinion. Int. J. Syst. Evol. Microbiol., 53, 1207-1217.

    PubMed  CAS  Google Scholar 

  • Wilson, G. L. (1917). Buffalo birdwoman’s garden. Agriculture of the Hidatsa indians. St. Paul, MN: Minnesota Historical Society Press, 1987 edition (129 pp.).

    Google Scholar 

  • Wilson, K. J. (1995). Molecular techniques for the study of rhizobial ecology in the field. Soil Biol. Biochem., 27, 501-514.

    CAS  Google Scholar 

  • Wisniewski-Dye, F., and Downie, J. A. (2002). Quorum sensing in Rhizobium. Antonie van Leeuwenhoek, 81, 397-407.

    PubMed  CAS  Google Scholar 

  • Wong, F. Y. K., Stackebrandt, E., Ladha, J. K., Fleischman, D. E., Date, R. A., and Fuerst, J. A. (1994). Phylogenetic analysis of Bradyrhizobium japonicum and photosynthetic stem-nodulating bacteria from Aeschenomenespecies grown in separated geographical regions. Appl. Environ. Microbiol., 60, 940-946.

    PubMed  CAS  Google Scholar 

  • Wooley, J., Lepiz, R., Aquinas-Portes y Castro, T., and Voss, J. (1991). Bean cropping systems in the tropics and subtropics and their determinants. In A. van Schoonhoven and O. Voysest (Eds.), Common beans: Research for crop improvement (pp. 679-706). Cali, Colombia: CIAT.

    Google Scholar 

  • Xu, L. M., Ge, C., Cui, Z., Li, J., and Fan, H. (1995). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol., 45, 706-711.

    PubMed  CAS  Google Scholar 

  • Yang, S. S., Bellogin, R. A., Buendia, A., Camacho, M., Chen, M., Cubo, T., et al. (2001). Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J. Biotech., 91, 243-255.

    CAS  Google Scholar 

  • Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., Ninke, K., Philip-Hollingsworth, S., et al. (1997). Natural endophytic association between Rhizobium leguminosarumbv trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil, 194, 99-114.

    CAS  Google Scholar 

  • Yanni, Y.G., Rizk, R.Y., El-Fattah, F. K. A., Squartini, A., Corich, V., Giacomini, A., et al. (2001). The beneficial plant growth promoting association of Rhizobium leguminosarumbvtrifolii with rice roots. Aust. J. Plant Physiol., 28, 845-870.

    CAS  Google Scholar 

  • Yao, Z. Y., Kan, F. L., Wang, E. T., Wei, G. H., and Chen, W. X. (2002). Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int. J. Syst. Evol. Microbiol., 52, 2219-2230.

    PubMed  CAS  Google Scholar 

  • Young, A. G., and Clarke, G. M. (2000). Genetics, demography and viability of fragmented populations. Cambridge, UK: Cambridge University Press (438 pp.).

    Google Scholar 

  • Young, J. M. (2003). The genus Ensifer (Casida, 1982) takes priority over Sinorhizobium(Chen et al., 1988) and Sinorhizobium morelense(Wanget al., 2002) is a later synonym of Ensifer adhaerens(Casida, 1982). Is the combination ‘Sinorhizobium adhaerens’(Casida, 1982) Willemset al.,2003 legitimate? Request for an opinion. Int. J. Syst. Evol. Microbiol.,53,2107-2110.

    PubMed  CAS  Google Scholar 

  • Young, J. M., Kuykendall, L. D., Martinez-Romero, E., Kerr, A., and Sawada, H. (2001). A revision of Rhizobium (Frank, 1889), with an emended description of the genus, and the inclusion of all species of Agrobacterium(Conn, 1942) and Allorhizobium undicola(de Lajudie et al., 1998) as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol.,51, 89-103.

    CAS  Google Scholar 

  • Zahran, H. H. (1999.) Rhizobiumlegume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63, 968-989.

    PubMed  CAS  Google Scholar 

  • Zhang, H., Charles, T. C., Driscoll, B. T., Prithiviraj, B., and Smith, D. L. (2002). Low temperature-tolerant Bradyrhizobium japonicum strains allowing improved soybean yield in short-season areas. Agron. J., 94, 870-875.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Graham, P.H. (2008). Ecology of the Root-Nodule Bacteria of Legumes. In: Dilworth, M.J., James, E.K., Sprent, J.I., Newton, W.E. (eds) Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3548-7_2

Download citation

Publish with us

Policies and ethics