Skip to main content

Carbon And Nitrogen Metabolism In Actinorhizal Nodules

  • Chapter
Nitrogen-fixing Actinorhizal Symbioses

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeysekera, R. M., Newcomb, W., Silvester, W. B., and Torrey, J. G. (1990). A freeze-fracture electron microscopic study of Frankia in root nodules of Alnus incanagrown at three oxygen tensions. Can. J. Microbiol., 36, 97-108.

    Google Scholar 

  • Akkermans, A. D. L., Huss-Danell, K., and Roelofsen, W. (1981). Enzymes in the tricarboxylic acid cycle and the malate-aspartate shuttle in the N2-fixing endophyte of Alnus glutinosa. Physiol. Plant., 53, 289-294.

    Article  CAS  Google Scholar 

  • Akkermans, A. D. L., Roelofsen, W., Blom, J., Huss-Danell, K., and Harkink, R. (1983). Utilization of carbon and nitrogen compounds by Frankia in synthetic media and in root nodules of Alnus glutinosa, Hippophaë rhamnoides, and Datisca cannabina. Can. J. Bot., 61, 2793-2800.

    Article  CAS  Google Scholar 

  • Akkermans, A. D. L., van Straten, J., and Roelofsen, W. (1977). Nitrogenase activity of nodule homogenates of Alnus glutinosa: a comparison with the Rhizobium-pea system. In W. E. Newton, J. R. Postgate and C. Rodriguez-Barrueco (Eds.), Recent developments in nitrogen fixation (pp. 591-603). London, UK: Academic Press.

    Google Scholar 

  • Baker, A., Hill, G. F., and Parsons, R. (1997a). Evidence for N feedback regulation of N2 fixation in Alnus glutinosa L. J. Exp. Bot., 48, 67-73.

    Article  CAS  Google Scholar 

  • Baker, A., Hill, G. F., and Parsons, R. (1997b). Alteration of N nutrition in Myrica gale induces changes in nodule growth, nodule activity and amino acid composition. Physiol. Plant., 99, 632-639.

    Article  CAS  Google Scholar 

  • Baker, A., and Parsons, R. (1997). Rapid assimilation of recently fixed N2 in root nodules of Myrica gale. Physiol. Plant., 99, 640-647.

    Article  CAS  Google Scholar 

  • Benson, D. R., and Schultz, N. A. (1990). Physiology and biochemistry of Frankia in culture. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 107-127). San Diego, CA: Academic Press.

    Google Scholar 

  • Benson, D. R., and Silvester, W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev., 57, 293-319.

    PubMed  CAS  Google Scholar 

  • Berg, R. H. (1990). Cellulose and xylans in the interface capsule in symbiotic cells of actinorhizae. Protoplasma, 159, 35-43.

    Article  CAS  Google Scholar 

  • Berry, A. M., Harriot, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., and Jones, A. D. (1993). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Natl. Acad. Sci. U.S.A., 90, 6091-6094.

    Article  PubMed  CAS  Google Scholar 

  • Berry, A. M., Murphy, T. M., Okubara, P. A., Jacobsen, K. R., Swensen, S. M., and Pawlowski, K. (2004). Novel expression pattern of cytosolic glutamine synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata. Plant Physiol.,135,1849-1862.

    Google Scholar 

  • Berry, A. M., Rasmussen, U., Bateman, K., Huss-Danell, K., Lindwall, S., and Bergman, B. (2002). Arabinogalactan proteins at the symbiotic interface in root nodules of Alnus spp. New Phytol., 155, 469-479.

    Article  CAS  Google Scholar 

  • Berry, A. M., and Sunell, L. A. (1990). The infection process and nodule development. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 61-81). San Diego, CA: Academic Press.

    Google Scholar 

  • Blom, J. (1982). Carbon and nitrogen metabolism of free-livingFrankia and ofFrankia-Alnussymbioses. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Blom J., Roelofsen, W., and Akkermans, A. D. L. (1981). Assimilation of nitrogen in root nodules of alder (Alnus glutinosa). New Phytol., 89, 321-326.

    Article  CAS  Google Scholar 

  • Bollard, E. G. (1957). Translocation of organic nitrogen in the xylem. Aust. J. Biol. Sci., 10, 292-301.

    CAS  Google Scholar 

  • Ching, T. M., Monaco, P. A., and Ching, K. K. (1983). Energy status and cytochromes in isolated endophytic vesicle clusters of red alder root nodules. Can. J. For. Res., 13, 921-928.

    CAS  Google Scholar 

  • Engelke, T., Jording, D., Kapp, D., and Pühler, A. (1989). Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J. Bacteriol., 171, 5551-5560.

    PubMed  CAS  Google Scholar 

  • Fontaine, A. I., Lancelle, S. A., and Torrey, J. G. (1984). Initiation and ontogeny of vesicles in cultured Frankia strain HFPArI3. J. Bacteriol., 160, 921-927.

    PubMed  CAS  Google Scholar 

  • Franche, C., Laplaze, L., Duhoux, E., and Bogusz D. (1998). Actinorhizal symbioses: Recent advances in plant molecular and genetic transformation studies. Crit. Rev. Plant Sci., 17, 1-28.

    Article  CAS  Google Scholar 

  • Gentili, F., and Huss-Danell, K. (2002). Phosphorus modifies the effects of nitrogen on nodulation in split-root systems of Hippophae rhamnoides. New Phytol, 153, 53-61.

    Article  CAS  Google Scholar 

  • Giller, K. E., and Wilson, K. J. (1991). Nitrogen fixation in tropical cropping systems. 1st Ed. Wallingford, UK: CAB International.

    Google Scholar 

  • Gordon, A. J., Minchin, F. R. James, C. L., and Komina, O. (1999). Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol., 120, 867-877.

    Article  PubMed  CAS  Google Scholar 

  • Guan, C., Ribeiro, A., Akkermans, A. D. L., Jing, Y., van Kammen, A., et al. (1996). Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: Expression of glutamine synthetase and acetylornithine transaminase. Plant Mol. Biol., 32, 1177-1184.

    Article  PubMed  CAS  Google Scholar 

  • Hafeez, F., Akkermans, A. D. L., and Chaudhary, A.H. (1984). Observations on the ultrastructure of Frankia sp. in root nodules of Datisca cannabina L. Plant Soil, 79, 383-402.

    Article  Google Scholar 

  • Hahn, D., Starrenburg, M. J. C., and Akkermans, A. D. L. (1988). Variable compatibility of cloned Alnus glutinosa ecotypes against ineffective Frankia strains. Plant Soil, 107, 233-243.

    Article  Google Scholar 

  • Hartwig, U. A. (1998). The regulation of symbiotic N2 fixation: A conceptual model of N feedback from the ecosystem to the gene expression level. Persp. Plant Ecol. Evol. Syst., 1, 92-120

    Article  Google Scholar 

  • Hirel, B., Perrot-Rechenmann, C., and Gadal, P. (1982). Glutamine synthetase in alder (Alnus glutinosa) root nodules. Purification, properties and cytoinmunochemical localization. Physiol. Plant., 55, 197-203.

    Article  CAS  Google Scholar 

  • Hsieh, M. H., Lam, H. M, van de Loo, F. J., and Coruzzi, G. (1998). A PII-like protein in Arabidopsis: Putative role in nitrogen sensing. Proc. Natl. Acad. Sci. U.S.A., 95, 13965-13970.

    Article  PubMed  CAS  Google Scholar 

  • Huss-Danell, K. (1990). The physiology of actinorhizal nodules. In C. T. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 129-156). San Diego, CA: Academic Press.

    Google Scholar 

  • Huss-Danell, K. (1997). Actinorhizal symbioses and their N2 fixation. New Phytol., 136, 375-405.

    Article  CAS  Google Scholar 

  • Huss-Danell, K., and Bergman, B. (1990). Nitrogenase in Frankia from root nodules of Alnus incana (L.) Moench: Immunolocalization of the Fe- and MoFe-proteins during vesicle differentiation. New Phytol., 116, 443-455.

    Article  Google Scholar 

  • Huss-Danell, K., Lundquist, P.-O., and Ohlsson, H. (1992). Distribution of biomass and nitrogen among plant parts and soil nitrogen in a young Alnus incana stand. Can. J. Bot., 70, 1545-1549.

    Google Scholar 

  • Huss-Danell, K., Roelofsen, W., Akkermans, A. D. L., and Meijer, P. (1982). Carbon metabolism of Frankia spp. in root nodules of Alnus glutinosa and Hippophae rhamnoides. Physiol. Plant., 54, 461-466.

    Article  CAS  Google Scholar 

  • Huss-Danell, K., and Sellstedt, A. (1985). Nitrogenase activity in response to darkening and defoliation of Alnus incana. Can. J. Exp. Bot., 36, 1352-1358.

    Article  CAS  Google Scholar 

  • Imsande, J., and Touraine, B. (1994). N demand and the regulation of nitrate uptake. Plant Physiol., 105, 3-7.

    PubMed  CAS  Google Scholar 

  • Kim, H. B., Lee, S. H., and An, C. S. (1999). Isolation and characterization of a cDNA clone encoding asparagine synthetase from root nodules of Elaeagnus umbellata. Plant Sci., 149, 85-94.

    Article  CAS  Google Scholar 

  • Kleemann, G., Alskog, G., Berry, A. M., and Huss-Danell, K. (1994). Lipid composition and nitrogenase activity of symbiotic Frankia (Alnus incana) in response to different oxygen concentrations. Protoplasma, 183, 107-115.

    Article  CAS  Google Scholar 

  • Lam, H. M., Coschigano, K. T., Olivera, I. C., Melo-Oliveira, R., and Coruzzi, G. M. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 569-593.

    Article  PubMed  CAS  Google Scholar 

  • Laplaze, L., Ribeiro, A., Franche, C., Duhoux, E., Auguy, F., Bogusz, D., et al. (2000). Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Mol. Plant-Microbe Interact., 13, 113-117.

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier, M. P., and Lechevalier, H. A. (1990). Systematics, isolation and culture of Frankia. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology of Frankia and actinorhizal plants (pp. 35-60). San Diego, CA: Academic Press.

    Google Scholar 

  • Li, Y., Parsons, R., Day, D. A., and Bergersen, F. J. (2002). Reassessment of major products of N2 fixation by bacteroids from soybean root nodules. Microbiol., 148, 1959-1966.

    CAS  Google Scholar 

  • Lodwig, E. M., Hosie, A. H. F., Bourdés, A., Findlay, K., Allaway, D., et al. (2003). Amino-acid cycling drives nitrogen fixation in the Rhizobium-legume symbiosis. Nature, 422, 722-726.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, M. F., and Torrey, J. G. (1985). Purification and properties of trehalase in Frankia ArI3. Arch. Microbiol., 143, 209-215.

    Article  CAS  Google Scholar 

  • Lopez, M. F., Young, P., and Torrey, J. G. (1986). A comparison of carbon source utilization for growth and nitrogenase activity in two Frankia isolates. Can. J. Microbiol., 32, 353-358.

    CAS  Google Scholar 

  • Lundberg, P., Lundquist, P.-O., and Huss-Danell, K. (1996). 1H, 13C, 15N and 31P NMR methods for studying metabolites in an N2-fixing root nodule symbiosis, Alnus incana x Frankia. Bull. Magn. Reson., 18, 131-132.

    CAS  Google Scholar 

  • Lundquist, P.-O. (1993). Dynamics of nitrogenase in theFrankia-Alnus incanasymbiosis. Ph.D. Thesis, Department of Plant Physiology, Umeå University, Umeå, Sweden.

    Google Scholar 

  • Lundquist, P.-O., and Huss-Danell, K. (1991a). Nitrogenase activity and amounts of nitrogenase proteins in a Frankia-Alnus incana symbiosis subjected to darkness. Plant Physiol., 95, 808-813.

    CAS  Google Scholar 

  • Lundquist, P.-O., and Huss-Danell, K. (1991b). Response of nitrogenase to altered carbon supply in a Frankia-Alnus incana symbiosis. Physiol. Plant., 83, 331-338.

    Article  CAS  Google Scholar 

  • Lundquist, P.-O., and Huss-Danell, K. (1992). Immunological studies of glutamine synthetase in Frankia-Alnus incana symbioses. FEMS Microbiol Lett, 91, 141-146.

    Article  CAS  Google Scholar 

  • Lunquist, P.-O., Näsholm, T., and Huss-Danell, K. (2003). Nitrogenase activity and root nodule metabolism in response to O2 and short-term N2 deprivation in dark-treated Frankia-Alnus incana plants. Physiol. Plant., 119, 244-252.

    Article  Google Scholar 

  • Lundquist, P.-O., Pawlowski, K., and Vance, C. P. (1996). Carbamoyl phosphate synthase: Sequence analysis and nodule enhanced expression in nitrogen-fixing Alnus incana root nodules. Plant Physiol., 111 (Suppl.), 90.

    Google Scholar 

  • Martin F., Hirel, B., and Gadal, P. (1983). Purification and properties of ornithine carbamyl transferase I from Alnus glutinosa root nodules. Z. Pflanz., 111, 413-422.

    CAS  Google Scholar 

  • Mazzucco C., and Benson, D. R. (1984). 14C-Methylammonium transport by Frankia sp. strain CpI1. J. Bacteriol., 160, 636-641.

    PubMed  CAS  Google Scholar 

  • McClure, P. R., Coker, III, G. T., and Schubert, K. R. (1983). Carbon dioxide fixation in roots and nodules of Alnus glutinosa. Plant Physiol., 71, 652-657.

    PubMed  CAS  Google Scholar 

  • Miettinen, J. K., and Virtanen, A. I. (1952). The free amino acids in the leaves, roots and root nodules of the alder (Alnus). Physiol Plant, 5, 540-557.

    Article  CAS  Google Scholar 

  • Miflin, B. J., and Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot., 53, 979-987.

    Article  PubMed  CAS  Google Scholar 

  • Muller, B., and Touraine, B. (1992). Inhibition of NO3 - uptake by various phloem-translocated amino acids in soybean seedlings. J. Exp. Bot., 43, 617-623.

    Article  CAS  Google Scholar 

  • Mullin, B. C., and Dobritsa, S. V. (1996). Molecular analysis of actinorhizal symbiotic systems: Progress to date. Plant Soil, 186, 9-20.

    Article  CAS  Google Scholar 

  • Newcomb, W., and Wood, S. M. (1987). Morphogenesis and fine structure of Frankia (Actinomycetales): The microsymbiont of nitrogen-fixing actinorhizal root nodules. Int. Rev. Cytol., 109, 1-89.

    Article  PubMed  CAS  Google Scholar 

  • Okubara, P. A., Pawlowski, K., Murphy, T. M., and Berry, A. M. (1999). Symbiotic root nodules of the actinorhizal plant Datisca glomerata express Rubisco activase mRNA. Plant Physiol., 120, 411-420.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, R., Silvester, W. B., Harris, S., Gruitjers, W. T. M., and Bullivant, S. (1987). Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol., 83, 728-731.

    PubMed  CAS  Google Scholar 

  • Parsons, R., Stanforth, A., Raven, J. A., and Sprent, J. I. (1993). Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Env., 16, 125-136.

    Article  CAS  Google Scholar 

  • Parsons, R., and Sunley, R. J. (2001). Nitrogen nutrition and the role of root-shoot nitrogen signalling particularly in symbiotic systems. J. Exp. Bot., 52, 435-443.

    PubMed  CAS  Google Scholar 

  • Pawlowski, K., Akkermans, A. D. L., van Kammen, A., and Bisseling, T. (1995). Expression of Frankia nif genes in nodules of Alnus glutinosa. Plant Soil, 170, 371-376.

    Article  CAS  Google Scholar 

  • Pawlowski, K., Ribeiro, A., Guan, C., van Kammen, A., Berry, A. M., and Bisseling, T. (1996). Actinorhizal nodules from different plant families. In G. Stacey, B. Mullin, and P.M. Gresshoff (Eds.), Biology of plant-microbe interactions, Vol. 1 (pp. 417-422). St Paul, MN: IS-MPMI.

    Google Scholar 

  • Perrot-Rechenmann, C., Vidal, J., Maudinas, B., and Gadal, P. (1981). Immunocytochemical study of phosphoenolpyruvate carboxylase in nodulated Alnus glutinosa. Planta, 153, 14-17.

    Article  CAS  Google Scholar 

  • Podesta, F. E., and Plaxton, W. C. (1994). Regulation of cytosolic carbon metabolism in germinating Ricinus communis cotyledons: II. Properties of phosphoenolpyruvate carboxylase and cytosolic pyruvate kinase associated with the regulation of glycolysis and nitrogen assimilation. Planta, 194, 381-387.

    Article  CAS  Google Scholar 

  • Prin, Y., Mallein-Garin, F., and Simonet, P. (1993). Identification and localization of Frankia strains in Alnus nodules by in situ hybridization of nifH mRNA with strain-specific oligonucleotide probes. J. Exp. Bot., 44, 815-820.

    Article  Google Scholar 

  • Rawat, S. R., Silim, S. N., Kronzucker, H. J., Siddiqi, M. Y., and Glass, A. D. (1999). AtAMT1 gene expression and NH4 + uptake in roots of Arabidopsis thaliana: Evidence for regulation by root glutamine levels. Plant J., 19, 143-152.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, A., Praekelt, U., Akkermans, A. D. L., Meacock, P. A., van Kammen, A., et al. (1996). Identification of agthi1, whose product is involved in biosynthesis of the thiamine precursor thiazole, in actinorhizal nodules of Alnus glutinosa. Plant J., 10, 361-368.

    Article  PubMed  CAS  Google Scholar 

  • Romagni, J. G., and Dayan, F. E. (2000). Measuring asparagine synthetase activity in crude plant extracts. J. Agri. Food Chem., 48, 1692-1696.

    Article  CAS  Google Scholar 

  • Rosendahl, L., Vance, C. P., and Pedersen, W. B. (1990). Products of dark CO2 fixation in pea root nodules support bacteroid metabolism. Plant Physiol., 93, 12-19.

    PubMed  CAS  Google Scholar 

  • Schubert, K. R. (1986). Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Ann. Rev. Plant. Physiol., 37, 539-574.

    CAS  Google Scholar 

  • Schubert, K. R., and Boland, M. J. (1990). The ureides. In B. J. Miflin and P. J. Lea (Eds.), The biochemistry of plants, Vol. 16 (pp.197-282). San Diego, CA: Academic Press.

    Google Scholar 

  • Schuller, K. A., Turpin, D. H., and Plaxton, W. D. (1990). Metabolite regulation of partially purified soybean nodule phosphoenolpyruvate carboxylase. Plant Physiol., 94, 1429-1435.

    PubMed  CAS  Google Scholar 

  • Scott A., Gardner, I. C., and McNally, S. F. (1981). Localization of citrulline synthesis in the alder root nodule and its implication in nitrogen fixation. Plant Cell Rep., 1, 21-22.

    Article  CAS  Google Scholar 

  • Seguin, A., and Lalonde, M. (1989). Detection of pectinolytic activity and pel homologous sequences in Frankia. Plant Soil, 118, 221-229.

    Article  CAS  Google Scholar 

  • Sellstedt, A., and Atkins, C. A. (1991). Composition of amino compounds transported in xylem of Casuarina sp. J. Exp. Bot., 42, 1493-1497.

    Article  CAS  Google Scholar 

  • Shi, L., Twary, S. N., Yoshioka, H., Gregerson, R. G., Miller, S. S., Samac, D. A., et al. (1997). Nitrogen assimilation in alfalfa: Isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. Plant Cell, 9, 1339-1356.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, H. S., and Singh, R. P. (1987). Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochem., 26, 597-610.

    Article  CAS  Google Scholar 

  • Tonin, G. S., Wheeler, C. T., and Crozier, A. (1990). Effect of nitrogen nutrition on amino acid composition of xylem sap and stem wood in Alnus glutinosa. Physiol. Plant., 79, 79, 506-511.

    Article  CAS  Google Scholar 

  • Tonin, G. S., Wheeler, C. T., and Crozier, A. (1991). Effect of changes in nitrogen nutrition on the polyamine content of Alnus glutinosa. Plant Cell Env., 14, 415-421.

    Article  CAS  Google Scholar 

  • Valverde, C. (2000). Regulación de la nodulación radicular en la simbiosisDiscaria trinervis-Frankia. Ph. D. Thesis, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.

    Google Scholar 

  • Valverde, C., Ferrari, A., and Wall, L. G. (2002). Phosphorus and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis (Rhamnaceae) and Frankia BCU110501. New Phytol., 153, 43-52.

    Article  CAS  Google Scholar 

  • Valverde, C., and Wall, L.G. (2003a). Ammonium assimilation in Discaria trinervis root nodules. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C). Plant Soil, 254, 139-153.

    Article  CAS  Google Scholar 

  • Valverde, C., and Wall, L.G. (2003b). The regulation of nodulation, nitrogen fixation and assimilation under a carbohydrate shortage stress in the Discaria trinervis-Frankia symbiosis. Plant Soil, 254, 155-165.

    Article  CAS  Google Scholar 

  • Valverde, C., Wall, L. G., and Huss-Danell, K. (2000). Regulation of nodulation and nodule mass relative to nitrogenase activity and nitrogen demand in seedlings of Discaria trinervis (Rhamnaceae). Symbiosis, 28, 49-62.

    CAS  Google Scholar 

  • van Ghelue, M., Ribeiro, A., Solheim, B., Akkermans, A. D. L., Bisseling, T., and Pawlowski, K. (1996). Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: Comparison with legume nodules. Mol. Gen. Genet., 250, 437-446.

    Article  PubMed  Google Scholar 

  • van Straten, J., Akkermans, A. D. L., and Roelofsen, W. (1977). Nitrogenase activity of endophyte suspensions derived from root nodules of Alnus, Hippophaë, Shepherdia and Myrica spp. Nature, 266, 257-258.

    Article  Google Scholar 

  • Vance, C. P. (2000). Amide biosynthesis in root nodules of temperate legumes. In E. W. Triplett (Ed.), Prokaryiotic nitrogen fixation: A model system for analysis of a biological process (pp. 589-607). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Vance C. P., and Lamb, J. F. S. (2001). Application of biochemical studies to improving nitrogen fixation. Aust. J. Exp. Agri., 41, 403-416.

    Article  CAS  Google Scholar 

  • Vikman, P.-A. (1992). The symbiotic vesicle is a major site for respiration in Frankia from Alnus incana root nodules. Can. J. Microbiol., 38, 779-784.

    CAS  Google Scholar 

  • Vikman, P.-A., and Huss-Danell, K. (1987a). Capacity for hexose respiration in symbiotic Frankia from Alnus incana. Physiol. Plant., 70, 349-354.

    Article  CAS  Google Scholar 

  • Vikman, P.-A., and Huss-Danell, K. (1987b). Purity of Frankia preparations from root nodules of Alnus incana. Physiol. Plant., 71, 489-494.

    Article  Google Scholar 

  • Vikman, P.-A., and Huss-Danell, K. (1991). Respiration of malate and glutamate in symbiotic Frankia prepared from Alnus incana. J. Exp. Bot., 42,221-228.

    Article  CAS  Google Scholar 

  • Vikman, P.-A., Lundquist, P.-O., and Huss-Danell, K. (1990). Respiratory capacity, nitrogenase activity and structural changes of Frankia, in symbiosis with Alnus incana, in response to prolonged darkness. Planta, 182, 617-625.

    Article  CAS  Google Scholar 

  • Wall, L. G., Hellsten, A., and Huss-Danell, K. (1998). P alters N effects on nodulation in Alnus incana and Trifolium pratense. In C. Elmerich, A. Kondorosi and W. E. Newton (Eds.), Biological nitrogen fixation for the 21st century (pp. 363-364). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Wall, L. G., Hellsten, A., and Huss-Danell, K. (2000). Nitrogen, phosphorus, and the ratio between them affect nodulation in Alnus incana and Trifolium pratense. Symbiosis, 29, 91-105.

    Google Scholar 

  • Walsh, K. B., Ng, B. H., and Chandler, G. E. (1984). Effects of nitrogen nutrition on xylem sap composition of Casuarinaceae. Plant Soil, 81, 291-293.

    Article  CAS  Google Scholar 

  • Warenbourg, F. R., and Roumet, C. (1989). Why and how to estimate the cost of symbiotic N2 fixation? A progressive approach based on the use of 14C and 15N isotopes. Plant Soil, 115, 167-177.

    Article  Google Scholar 

  • Waters, J. K., Hughes, B. L., Purcell II, L. C., Gerhardt, K.O., Mawhinney, T. P., and Emmerich, D. W. (1998). Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proc. Natl. Acad. Sci. U.S.A., 95, 12038-12042.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, C. T. (1971). The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa. New Phytol., 70, 487-495.

    Article  Google Scholar 

  • Wheeler, C. T., and Bond, G. (1970). The amino acids of non-legume root nodules. Phytochem., 9, 705-708.

    Article  CAS  Google Scholar 

  • Wheeler, C. T., and Lawrie, A. C. (1976). Nitrogen fixation in root nodules of alder and pea in relation to the supply of photosynthetic assimilates. In P.S. Nutman (Ed.), Symbiotic nitrogen fixation in plants (pp. 497-510). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Wheeler, C. T., Tonin, G. S., and Sutcliffe, A. (1994). Polyamines of Frankia in relation to nitrogen nutrition. Soil Biol. Biochem., 26, 577-581.

    Article  CAS  Google Scholar 

  • Zhang, X., and Benson, D. R. (1992). Utilization of amino acids by Frankia sp. strain CpI1. Arch. Microbiol., 158, 256-261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Valverde, C., Huss-Danell, K. (2007). Carbon And Nitrogen Metabolism In Actinorhizal Nodules. In: Pawlowski, K., Newton, W.E. (eds) Nitrogen-fixing Actinorhizal Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3547-0_7

Download citation

Publish with us

Policies and ethics