Advertisement

Evolution Of Actinorhizal Host Plants And Frankia Endosymbionts

  • S. M. Swensen
  • D. R. Benson
Part of the Nitrogen Fixation: Origins, Applications, and Research Progress book series (NITR, volume 6)

Keywords

Nitrogen Fixation Root Nodule Symbiotic Nitrogen Fixation Frankia Strain Actinorhizal Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akimov, V. N., and Dobritza, S. V. (1992). Grouping of Frankia strains on the basis of DNA relatedness. Syst. Appl. Microbiol., 15,327-379.Google Scholar
  2. Akimov, V. N., Dobritsa, S. V., and Stupar, O. S. (1991). Grouping of Frankia strains by DNA-DNA homology: How many genospecies are in the genus Frankia? In M. Polsinelli, R. Materassi and M. Vincenzini (Eds.), Nitrogen fixation (pp. 635-636). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  3. Akkermans, A. D. L., Hafeez, F., Roelofsen, W., Chaudhary, A. H., and Baas, R. (1983). Ultrastructure and nitrogenase activity of Frankia grown in pure culture and in actinorrhizae of Alnus, Colletia and Datisca. In C. Veeger and W. E. Newton (Eds.), Advances in nitrogen fixation research (pp. 311-319). The Hague, The Netherlands: Nijhoff/Junk.Google Scholar
  4. Akkermans, A. D. L., and van Dijk, C. (1981). Non-legumious root-nodule symbioses with actinomycetes and Rhizobium. In W. Broughton (Ed.), Nitrogen fixation (vol. 1, pp. 57-103). London, UK: Oxford University Press.Google Scholar
  5. An, C. S., Riggsby, W. S., and Mullin, B. C. (1985). Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int. J. Syst. Bacteriol., 35, 140-146.Google Scholar
  6. Angiosperm Phylogeny Group (1998). An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard., 85, 531-553.Google Scholar
  7. Baker, D. D. (1987). Relationships among pure cultured strains of Frankia based on host specificity. Physiol. Plant., 70, 245-248.Google Scholar
  8. Baker, D. D., and Miller, N. G. (1980). Ultrastructural evidence for the existence of actinorhizal species in the late Pleistocene. Can. J. Bot., 58, 1612-1620.Google Scholar
  9. Baker, D. D., and Schwintzer, C. R. (1990). Introduction. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 1-13). New York, NY: Academic Press.Google Scholar
  10. Becking, J. H. (1970). Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Inter. J. System. Bacteriol., 20, 201-220.Google Scholar
  11. Becking, J. H., De Boer, W. E., and Houwink, A. L. (1964). Electron microscopy of the endophyte of Alnus glutinosa. Antonie Leeuwenhoek J. Microbiol. Serol., 30, 343-376.Google Scholar
  12. Benoit, L. F., and Berry, A. M. (1990). Methods for the production and use of actinorhizal plants in forestry, low maintenance landscapes, and revegetation. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 281-297). New York, NY: Academic Press.Google Scholar
  13. Benson, D. R., and Clawson, M. L. (2000). Evolution of the actinorhizal plant symbioses. In E. W. Triplett (Ed.) Prokaryotic nitrogen fixation: A model system for analysis of biological processes(pp. 207-224). Wymondham, UK: Horizon Scientific Press.Google Scholar
  14. Benson, D. R., and Silvester, W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev., 57, 293-319.PubMedGoogle Scholar
  15. Benson, D. R., Stephens, D. W., Clawson, M. L., and Silvester, W. B. (1996). Amplification of 16S rRNA genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. Appl. Environ. Microbiol., 62, 2904-2909.PubMedGoogle Scholar
  16. Berg, R. H. (1983). Preliminary evidence for the involvement of suberization in infection of Casuarina. Can. J. Bot., 61, 2910-2918.Google Scholar
  17. Berg, R. H., Langenstein, B., and Silvester, W. B. (1999). Development in the Datisca-Coriaria nodule type. Can. J. Bot., 77, 1334-1350.Google Scholar
  18. Berg, R. H., and McDowell, L. (1988). Cytochemistry of the wall of infected Casuarina actinorhizae. Can. J. Bot., 66,2038-2047.Google Scholar
  19. Berry, A. M., Harriott, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., and Jones, A. D. (1993). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Natl. Acad. Sci. USA, 90,6091-6094.PubMedGoogle Scholar
  20. Berry, A. M., McIntyre, L., and. McCully, M. E. (1986). Fine structure of root hair infection leading to nodulation in the Frankia-Alnussymbiosis. Can. J. Bot., 64,292-305.Google Scholar
  21. Berry, A. M., and Sunell, L. A. (1990). The infection process and nodule development. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 61-81). New York, NY: Academic Press.Google Scholar
  22. Berry, A. M., and Torrey, J. G. (1983). Root hair deformation in the infection process of Alnus rubra. Can. J. Microbiol., 61, 2863-2976.Google Scholar
  23. Beyazova, M., and Lechevalier, M. P. (1992). Low-frequency restriction fragment analysis of Frankiastrains (Actinomycetales). Int. J. Syst. Bacteriol., 42, 422-433.PubMedGoogle Scholar
  24. Bloom, R. A., Mullin, B. C., and Tate, III, R. L. (1989). DNA restriction patterns and DNA-DNA solution hybridization studies of Frankia isolates from Myrica pennsylvanica (bayberry). Appl. Environ. Microbiol., 55, 2155-2160.PubMedGoogle Scholar
  25. Bosco, M., Fernandez, M. P., Simonet, P., Materassi, R., and Normand, P. (1992). Evidence that some Frankia sp. strains are able to cross boundaries between Alnus and Elaeagnus host specificity groups. Appl. Environ. Microbiol., 58,1569-1576.PubMedGoogle Scholar
  26. Bosco, M. S., Jamann, S., Chapelon, C., Simonet, P., and Normand, P. (1994). Frankia microsymbiont in Dryas drummondii nodules is closely related to the microsymbiont of Coriaria and genetically distinct from other characterized Frankia strains. In H. A. Hegazi, M. Fayez, and M. Monib (Eds.), Nitrogen fixation with non-legumes (pp. 173-183). Cairo, Egypt: The American University in Cairo Press.Google Scholar
  27. Brunchorst, J. (1886-1888). Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters. Bot. Inst. Tübingen, 2, 150-177.Google Scholar
  28. Brunchorst, J. (1887). Die Struktur der Inhaltskörper in den Zellen einiger Wurzelanschwellungen. Bergens Mus. Aarsb., 235.Google Scholar
  29. Bousquet, J., Strauss, S. H., Doerksen, A. H., and Price, R. A. (1992). Extensive variation in the rate of rbcLgene sequences among seed plants. Proc. Natl. Acad. Sci. U.S.A., 89,7844-7848.PubMedGoogle Scholar
  30. Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795-803.Google Scholar
  31. Callaham, D., Del Tredici, P., and Torrey, J. G. (1978). Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899-902.PubMedGoogle Scholar
  32. Callaham, D., Newcomb, W., Torrey, J. G., and Peterson, R. L. (1979). Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica, and Comptonia. Bot. Gaz., 140 (Suppl.), S1-S9.Google Scholar
  33. Calvert, H. E., Chaudhary, A. H., and Lalonde, M. (1979). Structure of an unusual nodule root symbiosis in a non-leguminous herbaceous dicotyledon. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (p. 474). Corvallis, OR: Forest Research Laboratory, Oregon State University Press.Google Scholar
  34. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., et al. (1993). Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard., 80,528-580.Google Scholar
  35. Clawson, M. L. (1999). The diversity, ecology and phylogeny ofFrankiain actinorhizal plants. Ph.D. Thesis, University of Connecticut, Storrs CT.Google Scholar
  36. Clawson, M. L., and Benson, D. R. (1999a). Dominance of Frankia strains in stands of Alnus incana subsp. rugosa and Myrica pennsylvanica. Can. J. Bot., 77, 1203-1207.Google Scholar
  37. Clawson, M. L., and Benson, D. R. (1999b). Natural diversity of Frankia strains in actinorhizal root nodules from promiscuous hosts in the family Myricaceae. Appl. Environ. Microbiol., 65, 4521-4527.Google Scholar
  38. Clawson, M. L., Carù, M., and Benson, D. R. (1998). Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl. Environ. Microbiol., 64, 3539-3543.Google Scholar
  39. Clegg, M. T. (1993). Chloroplast gene sequences and the study of plant evolution. Proc. Natl. Acad. Sci. U.S.A., 90,363-367.PubMedGoogle Scholar
  40. Côte, B, Carlson, R. W., and Dawson, J. O. (1988). Leaf photosynthetic characteristics of seedlings of actinorhizal Alnus spp. and Elaeagnus spp. Photosynth. Res., 16, 211-218.Google Scholar
  41. Cournoyer, B., Gouy, M., and Normand, P. (1993). Molecular phylogeny of the symbiotic actinomycetes of the genus Frankia matches host-plant infection processes. Mol. Biol. Evol., 10, 1303-1316.PubMedGoogle Scholar
  42. Cournoyer, B., and Lavire, C. (1999). Analysis of Frankia evolutionary radiation using glnIIsequences.FEMS Microbiol. Lett., 177, 29-34.PubMedGoogle Scholar
  43. Crane, P. R. (1989a). Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Plant Syst. Evol., 162, 165-191.Google Scholar
  44. Crane, P. R. (1989b). Early fossil history and evolution of the Betulaceae. In P. R. Crane and S. Blackmore (Eds.), Evolution, systematics, and fossil history of the Hamamelidae (pp. 87-116). Oxford, UK: Clarendon Press.Google Scholar
  45. Crane, P. R., Friis, E. M., and Pedersen, K. R. (1995). The origin and early diversification of angiosperms. Nature, 374, 27-33.Google Scholar
  46. Cronquist, A. (1981). An integrated system of classification of flowering plants. New York, NY: Columbia University Press.Google Scholar
  47. Dahlgren, M. R. T. (1980). A revised system of classification of the angiosperms. Bot. J. Linn. Soc., 80, 91-124.Google Scholar
  48. Dawson, J. O. (1990). Interactions among actinorhizal and associated species. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 299-316). New York, NY: Academic Press.Google Scholar
  49. Dawson, J. O., and Gordon, J. C. (1979). Nitrogen fixation in relation to photosynthesis in Alnus glutinosa. Bot. Gaz., 140 (Suppl.), S70-S75.Google Scholar
  50. Dixon, R. O. D., and Wheeler, C. T. (1983). Biochemical, physiological, and environmental aspects of symbiotic nitrogen fixation. In J. C. Gordon and C. T. Wheeler (Eds.), Biological nitrogen fixation in forest ecosystems: Foundations and applications (pp. 107-171). The Hague, The Netherlands: Nijhoff/ Junk.Google Scholar
  51. Dommergues, Y. R., Diem, H. G., Gauthier, B. L., Dreyfus, B. L., and Cornet, F. (1984). Nitrogen-fixing trees in the tropics: Potentialities and limitations. In C. Veeger and W. E. Newton (Eds.), Recent advances in nitrogen fixation research(pp. 7-13). The Hague, The Netherlands: Nijhoff/ Junk.Google Scholar
  52. Donoghue, M. J., Olmstead, R. G., Smith, J. F., and Palmer, J. D. (1992). Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann. Mo. Bot. Gard., 79, 333-345.Google Scholar
  53. Doyle, J. J. (1992). Gene trees and species trees: molecular systematics as one-character taxonomy. Syst. Bot., 17,144-163.Google Scholar
  54. Erlich, P. R., and Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586-608.Google Scholar
  55. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791.Google Scholar
  56. Fernandez, M. P., Meugnier, H., Grimont, P. A. D., and Bardin, R. (1989). Deoxyribonucleic acid relatedness among members of the genus Frankia. Int. J. Syst. Bacteriol., 39, 424-429.Google Scholar
  57. Gaut, B. S., Musa, S. V., Clark, W. D., and Clegg, M. T. (1992). Relative rates of nucleotide substitution on the rbcL locus of monocotyledonous plants. J. Mol. Evol., 35,292-303.PubMedGoogle Scholar
  58. Gauthier, D., Jaffre, T., and Prin, Y. (1999). Occurrence of both Casuarina-infective and Elaeagnus-infective Frankia strains within actinorhizae ofCasuarina collina, endemic to New Caledonia. Eur. J. Soil. Biol., 35, 9-15.Google Scholar
  59. Gladkova, A. N. (1962). Fragments of the history of the Myricaceae family. Pollen Spores, 4, 345.Google Scholar
  60. Gordon, J. C., and Wheeler, C. T. (1978). Whole plant studies on photosynthesis and acetylene reduction in Alnus glutinosa. New Phytol., 80, 179-186.Google Scholar
  61. Graybeal, A. (1998). Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol., 47, 9-17.PubMedGoogle Scholar
  62. Hahn, D., Lechevalier, M. P., Fischer, A., and Stackebrandt, E. (1989). Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus, and “Blastococcus” and emendation of the family Frankiaceae. System. Appl. Microbiol., 11, 236-242.Google Scholar
  63. Hennig, W. (1950). Grundzüge einer theorie der phylogenetischen systematik. Berlin, Germany: Deutscher Zentralverlag.Google Scholar
  64. Hennig, W. (1966). Phylogenetic systematics. Urbana, IL: University of Illinois Press.Google Scholar
  65. Herendeen, P. S., Magallon-Puebla, S., Lupia, R., Crane, P. R., and Kobylinksa, J. (1999). A preliminary conspectus of the Allon flora from the late Cretaceous (late Santonian) of central Georgia, U.S.A. Ann. Missouri Bot. Gard., 86, 407-471.Google Scholar
  66. Hillis, D. M. (1996). Inferring complex phylogenies. Nature, 383, 130-131.PubMedGoogle Scholar
  67. Hiltner, L. (1898). über Entstehung und physiologische Bedeutung der Wurzelknöllchen. Forst. Naturwiss. Z., 7, 415-423.Google Scholar
  68. Hönerlage, W., Hahn, D., Zepp, K., Zeyer, J., and Normand, P. (1994). A hypervariable 23S rRNA region provides a discriminating target for specific characterization of uncultured and cultured Frankia. Syst. Appl. Microbiol., 17, 433-443.Google Scholar
  69. Hoot, S. B., Culham, A., and Crane, P. (1995). The utility of atpB gene sequences in resolving phylogenetic relationships: Comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann. Missouri Bot. Gard., 82, 194-207.Google Scholar
  70. Huang, J.-B., Zhao, Z.-Y., Chen, G.-X., and Liu, H.-C. (1985). Host range of Frankia endophytes. Plant Soil, 87, 61-65.Google Scholar
  71. Huguet, V., McCray Batzli, J., Zimpfer, J. F., Normand, P., Dawson, J. O., and Fernandez, M. P. (2001). Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl. Environ. Microbiol., 67, 2116-2122.PubMedGoogle Scholar
  72. Jacobsen-Lyon, K., Jensen, E. O., Jorgensen, J. E., Marcker, K. A., Peacock, W. J., and Dennis, E. S. (1995). Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell, 7, 213-23.PubMedGoogle Scholar
  73. Jamann, S., Fernandez, M. P., and Normand, P. (1993). Typing method for N2-fixing bacteria based on PCR-RFLP - application to the characterization of Frankia strains. Mol. Ecol., 2, 17-26.PubMedGoogle Scholar
  74. Janzen, D. H. (1980). When is it co-evolution? Evolution, 34, 611-612.Google Scholar
  75. Jeong, S. C., Ritchie, N. J., and Myrold, D. D. (1999). Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol. Phylogen. Evol., 13, 493-503.Google Scholar
  76. Karavaev, M. N. (1959). Nitrogen-fixing nodules on the roots of fossil alder (Alnus sp.). (In Russian.) Bot. Zh. (Leningrad), 44, 1000-1001.Google Scholar
  77. Kohls, S. J., Thimmapuram, J., Buschena, C. A., Paschke, M. W., and Dawson, J. O. (1994). Nodulation patterns of actinorhizal plants in the family Rosaceae. Plant Soil, 162, 229-239.Google Scholar
  78. Laguerre, G., Mazurier, S. I., and Amarger, N. (1992). Plasmid profiles and restriction fragment length polymorphism of Rhizobium leguminosarum bv. viciae in field populations. FEMS Microbiol. Ecol., 101,17-26Google Scholar
  79. Lalonde, M. (1979). Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from North American Comptonia peregrina (L.) Coult. root nodule. Bot. Gaz., 140 (Suppl.), S35-S43.Google Scholar
  80. Lalonde, M., Simon, L., Bousquet, J., and Seguin, A. (1988). Advances in the taxonomy of Frankia: Recognition of species alni and elaeagni and novel subspecies pommerii and vandijkii. In H. Bothe, F. J. De Bruijn, and W. E. Newton (Eds.), Nitrogen fixation: Hundred years after (pp. 671-680). Stuttgart, Germany: Gustav Fischer.Google Scholar
  81. Lankhanpal, R. N. (1970). Tertiary floras of India and their bearing on the historical geology of the region. Taxon, 19, 675-694.Google Scholar
  82. Laplaze, L., Duhoux, E., Franche, C., Frutz, T., Svistoonoff, S., et al. (2000). Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol. Plant-Microbe Interact., 13, 107-112.PubMedGoogle Scholar
  83. Lechevalier, M. P. (1983). Cataloging Frankia strains. Can. J. Microbiol., 61, 2964-2967.Google Scholar
  84. Lechevalier, M. P. (1984). The taxonomy of the genus Frankia. Plant Soil, 78, 1-6.Google Scholar
  85. Lechevalier, M. P. (1994). Taxonomy of the genus Frankia(Actinomycetales). Int. J. Syst. Bacteriol., 44, 1-8.Google Scholar
  86. Lechevalier, M. P., and Lechevalier, H. A. (1979). The taxonomic position of the actinomycetic endophytes. In J. C. Gordon, C. T. Wheeler and D. A. Perry (Eds.) Symbiotic nitrogen fixation in the management of temperate forests(pp. 111-122). Corvallis, OR: Forest Research Laboratory, Oregon State University.Google Scholar
  87. Lechevalier, M. P., and Lechevalier, H. A. (1989). Genus Frankia Brunchorst 1886, 174AL. In S. T. Williams, M. E. Sharpe and J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (pp. 2410-2417). Baltimore, MD: Williams and Wilkins.Google Scholar
  88. Liu, Q., and Berry, A. M. (1991). The infection process and nodule initiation in the Frankia-Ceanothus root nodule symbiosis. Protoplasma, 163, 82-92.Google Scholar
  89. Lumini, E., and Bosco, M. (1996). PCR-restriction fragment length polymorphism identification and host range of single-spore isolates of the flexible Frankia sp. strain UFI 132715. Appl. Environ. Microbiol., 62, 3026-3029.PubMedGoogle Scholar
  90. Lumini, E., Bosco, M., and Fernandez, M. P. (1996). PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol. Ecol., 21, 303-311.Google Scholar
  91. Maggia, L., and Bousquet, J. (1994). Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity toward Frankia. Mol. Ecol., 3, 459-467.Google Scholar
  92. Marechal, J., Clement, B., Nalin, R., Gandon, C., Orso, S., et al. (2000). A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus. Int. J. Syst. Evol. Microbiol., 50, 781-785.PubMedGoogle Scholar
  93. Martin, W., Gierl, A., and Saedler, H. (1989). Molecular evidence for pre-Cretaceous angiosperm origins. Nature, 339, 46-48.Google Scholar
  94. Martin, W., Lydiate, D., Brinkmann, H., Forkmann, G., Saedler, H., and Cerff, R. (1993). Molecular phylogenies in angiosperm evolution. Mol. Biol. Evol., 10, 140-162.PubMedGoogle Scholar
  95. Meyen, J. (1829). über das hervorwachsen parasitischer gebilde aus den wurzeln anderer pflanzen. Flora (Jena), 12, 49-64.Google Scholar
  96. Mildenhall, D. C. (1980). New Zealand late Cretaceous and Cenozoic plant biogeography: A contribution. Palaeogeogr. Palaecl., 31, 197-233.Google Scholar
  97. Miller, I. M., and Baker, D. D. (1985). The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma, 128, 107-119.Google Scholar
  98. Miller, I. M., and Baker, D. D. (1986). Nodulation of actinorhizal plants by Frankia strains capable of both root hair infection and intercellular penetration. Protoplasma, 131, 82-91.Google Scholar
  99. Mirza, M. S., Hahn, D., Dobritsa, S. V., and Akkermans, A. D. L. (1994). Phylogenetic studies on uncultured Frankia populations in nodules of Datisca cannabina. Can. J. Microbiol., 40, 313-318.PubMedGoogle Scholar
  100. Mirza, M. S., Hameed, S., and Akkermans, A. D. L. (1994). Genetic diversity of Datisca cannabina-compatible Frankia strains as determined by sequence analysis of the PCR-amplified 16S rRNA gene. Appl. Environ. Microbiol., 60, 2371-6.PubMedGoogle Scholar
  101. Mirza, M. S., Pawlowski, K., Hafeez, F. Y., Chaudhary, A. H., and Akkermans, A. D. L. (1994). Ultrastructure of the endophyte and localization of nifH transcripts in root nodules of Coriaria nepalensis Wall. by in situhybridization. New Phytol., 126,131-136.Google Scholar
  102. Mirza, S. M., Akkermans, W. M., and Akkermans, A. D. L. (1994). PCR-amplified 16S rRNA sequence analysis to confirm nodulation of Datisca cannabina L. by the endophyte of Coriaria nepalensis Wall. Plant Soil, 160,147-152.Google Scholar
  103. Moran, N. A. (1996). Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc. Natl. Acad. Sci. U.S.A., 93,2873-2878.PubMedGoogle Scholar
  104. Moran, N. A., Munson, M. A., Baumann, P., and Ishikawa, H. (1993). A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. Lond. B Biol. Sci., 253, 167-171.Google Scholar
  105. Muller, J. (1981). Fossil pollen records of extant angiosperms. Bot. Rev., 47, 1-142.Google Scholar
  106. Murry, M. A., Konopka, A. S., Pratt, S. D., and Vandergon, T. L. (1997). The use of PCR-based typing methods to assess the diversity of Frankia nodule endophytes of the actinorhizal shrub Ceanothus. Physiol. Plant., 99,714-721.Google Scholar
  107. Murry, M. A., Zhang, Z., and Torrey, J. G. (1985). Effect of oxygen on vesicle formation, acetylene reduction and oxygen-uptake kinetics in Frankia sp. HFPCcI3 isolated from Casuarina cunninghamiana. Can. J. Microbiol., 31, 804-809.PubMedGoogle Scholar
  108. Navarro, E., Jaffre, T., Gauthier, D., Gourbiere, F., Rinaudo, G., et al. (1999). Distribution of Gymnostoma spp. microsymbiotic Frankia strains in New Caledonia is related to soil type and to host-plant species. Mol. Ecol., 8, 1781-1788.PubMedGoogle Scholar
  109. Navarro, E., Nalin, R., Gauthier, D., and Normand, P. (1997). The nodular microsymbionts ofGymnostoma spp. are Elaeagnus-infective Frankia Strains. Appl. Environ. Microbiol., 63, 1610-1616.PubMedGoogle Scholar
  110. Nazaret, S., Cournoyer, B., Normand, P., and Simonet, P. (1991). Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences. J. Bacteriol., 173, 4074-4078.Google Scholar
  111. Neave, I. A., Dawson, J. O., and DeLucia, E. H. (1989). Autumnal photosynthesis is extended in nitrogen-fixing European black alder when compared with white basswood: Possible adaptive significance. Can. J. Forest Res., 19, 12-17.Google Scholar
  112. Newcomb, W. (1981). Fine structure of the root nodules of Dryas drummondiiRichards (Rosaceae). Can. J. Bot., 29,2500-2514.Google Scholar
  113. Newcomb, W., Callaham, D., Torrey, J. G., and Peterson, R. L. (1979). Morphogenesis and fine structure of the actinomycetous endophyte of nitrogen-fixing root nodules of Comptonia peregrina. Bot. Gaz., 140 (Suppl.),S22-S34.Google Scholar
  114. Newcomb, W., and Pankhurst, C. E. (1982). Fine structure of actinorhizal nodules of Coriaria arborea (Coriariaceae). New Zeal. J. Bot., 20, 93-103.Google Scholar
  115. Newcomb, W., and Wood, S. M. (1987). Morphogenesis and fine structure of Frankia (Actinomycetales): The microsymbiont of nitrogen-fixing actinorhizal root nodules.Int. Rev. Cytol., 109, 1-88.PubMedGoogle Scholar
  116. Nick, G., Paget, E., Simonet, P., Moiroud, A., and Normand, P. (1992). The nodular endophytes of Coriaria sp. form a distinct lineage within the genus Frankia. Mol. Ecol., 1, 175-181.PubMedGoogle Scholar
  117. Niner, B. M., Brandt, J. P., Villegas, M., Marshall, C. R., Hirsch A. M., and Valdes, M. (1996). Analysis of partial sequences of genes coding for 16S rRNA of actinomycetes isolated from Casuarina equisetifolia nodules in Mexico. Appl. Environ. Microbiol., 62,3034-3036.PubMedGoogle Scholar
  118. Normand, P., and Bousquet, J. (1989). Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J. Mol. Evol., 29,436-447.PubMedGoogle Scholar
  119. Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., et al. (1996). Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int. J. Syst. Bacteriol., 46, 1-9.PubMedGoogle Scholar
  120. Ochman, H., Elwyn, S., and Moran, N. A. (1999). Calibrating bacterial evolution. Proc. Natl. Acad. Sci. U.S.A., 96, 12638-12643.PubMedGoogle Scholar
  121. Ochman, H., and Wilson, A. C. (1987). Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J. Mol. Evol., 26, 74-86.PubMedGoogle Scholar
  122. Page, R. D. M. (1994). Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol., 43, 58-77.Google Scholar
  123. Page, R. D. M., and Charleston, M. A. (1997). From gene to organismal phylogeny: Reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol., 7,231-240.PubMedGoogle Scholar
  124. Parsons, R., Silvester, W. B., Harris, S., Gruijters, W. T. M., and Bullivant, S. (1987). Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol., 83, 728-731.PubMedGoogle Scholar
  125. Quispel, A. (1990). Discoveries, discussions, and trends in research on actinorhizal root nodule symbioses before 1978. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants(pp. 15-33). San Diego, CA: Academic Press.Google Scholar
  126. Racette, S., and Torrey, J. G. (1989a). The isolation, culture and infectivity of a Frankia strain from Gymnostoma papuanum (Casuarinaceae). Plant Soil, 118, 165-170.Google Scholar
  127. Racette, S., and Torrey, J. G. (1989b). Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1. Can. J. Bot., 67, 2873-2879.Google Scholar
  128. Ramirez-Saad, H., Janse, J. D., and Akkermans, A. D. L. (1998). Root nodules of Ceanothus caeruleus contain both the N2-fixing Frankia endophyte and a phylogenetically related Nod-/Fix-actinomycete. Can. J. Microbiol., 44, 140-148.Google Scholar
  129. Ritchie, N. J., and Myrold, D. D. (1999). Geographic distribution and genetic diversity of Ceanothus-infective Frankia strains. Appl. Environ. Microbiol., 65, 1378-1383.PubMedGoogle Scholar
  130. Rouvier, C., Prin, Y., Reddell, P., Normand, P., and Simonet, P. (1996). Genetic diversity among Frankia strains nodulating members of the family Casuarinaceae in Australia revealed by PCR and restriction fragment length polymorphism analysis with crushed root nodules. Appl. Environ. Microbiol., 62, 979-985.PubMedGoogle Scholar
  131. Roy, A., and Bousquet, J. (1996). The evolution of the actinorhizal symbiosis through phylogenetic analysis of host plants. Acta Bot. Gall., 143, 635-650.Google Scholar
  132. Safo-Sampah, S., and Torrey, J. G. (1988). Polysaccharide-hydrolyzing enzymes of Frankia (Actinomycetales). Plant Soil, 112, 89-97.Google Scholar
  133. Sarich, V., and Wison, A. C. (1967). Rates of albumin evolution in primates. Proc. Natl. Acad. Sci. U.S.A., 58, 142-148.PubMedGoogle Scholar
  134. Savard, L., Li, P., Strauss, S. H., Chase, M. W., Michaud, M., and Bousquet, J. (1994). Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc. Natl. Acad. Sci. U.S.A., 91, 5163-5167.PubMedGoogle Scholar
  135. Schwencke, J., and Caru, M. (2001). Advances in actinorhizal symbiosis: Host plant-Frankia interactions, biology, and application in arid land reclamation. Arid Land Res. Manag. 15, 285-327.Google Scholar
  136. Silver, W. S. (1964). Root nodule symbiosis. I. Endophyte of Myrica cerifera. J. Bacteriol., 87, 416-421.PubMedGoogle Scholar
  137. Silvester, W., Harris, S. L., and Tjepkema, J. D. (1990). Oxygen regulation and hemoglobin. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 157-176). New York, NY: Academic Press.Google Scholar
  138. Simonet, P., Navarro, E., Rouvier, C., Reddell, P., Zimpfer, J., et al. (1999). Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ. Microbiol., 1,525-533.PubMedGoogle Scholar
  139. Sims, H. J., Herendeen, P. S., Lupia, R., Christopher, R. A., and Crane, P. R. (1999). Fossil flowers with Normapolles pollen from the Upper Cretaceous of southeastern North America. Rev. Palaeobot. Palynol., 106, 131-151Google Scholar
  140. Soltis, D. E., Soltis, P. S., Chase, M.W., Mort, M. E., Albach, D. C., et al. (2000). Angiosperm phylogeny inferred from 18S rDNA, rbcL, andatpB sequences. Bot. J. Linn. Soc., 133,381-461.Google Scholar
  141. Soltis, D. E., Soltis, P. S., Nickrent, D. L., Johnson, L. A., Hahn, W. J., et al. (1997). Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard., 84, 1-49.Google Scholar
  142. Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., et al., (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. U.S.A., 92, 2647-2651.PubMedGoogle Scholar
  143. Sullivan, J. T., Patrick, H. N., Lowther, W. L., Scott, D. B., and Ronson, C. W. (1995). Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc. Natl. Acad. Sci. U.S.A., 92, 8985-8989.PubMedGoogle Scholar
  144. Swensen, S. M. (1996). The evolution of actinorhizal symbioses: Evidence for multiple origins of the symbiotic association. Amer. J. Bot., 83, 1503-1512.Google Scholar
  145. Swensen, S. M, Luthi, J. N., and Rieseberg, L. H. (1998). Datiscaceae revisited: Monophyly and the sequence of breeding system evolution. Syst. Bot., 23,157-169.Google Scholar
  146. Swensen, S. M., and Mullin, B.C. (1997). Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. Physiol. Plant., 99, 565-573.Google Scholar
  147. Takhtajan, A. (1980). Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev., 46, 225-348.Google Scholar
  148. Thompson, J. N. (1989). Concepts of coevolution. Trends Ecol. Evol., 4, 179-183.Google Scholar
  149. Thorne, R. T. (1992). Classification and geography of the flowering plants. Bot. Rev., 58, 225-359.Google Scholar
  150. Tjepkema, J. D. (1978). The role of oxygen diffusion from the shoots and nodule roots in nitrogen fixation by root nodules of Myrica gale L. Can. J. Bot., 61, 2898-2909.Google Scholar
  151. Tjepkema, J. D. (1979). Oxygen relations in leguminous and actinorhizal nodules. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 175-186). Corvallis, OR: Forest Research Laboratory, Oregon State University.Google Scholar
  152. Tjepkema, J. D. (1983). Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can. J. Bot., 61, 2924-2929.Google Scholar
  153. Tjepkema, J. D., Cashon, R. E., Beckwith, J., and Schwintzer, C. R. (2002). Hemoglobin in Frankia, a nitrogen-fixing actinomycete. Appl. Environ. Microbiol., 68, 2629-26231.PubMedGoogle Scholar
  154. Torrey, J. G. (1976). Initiation and development of root nodules of Casuarina(Casuarinaceae). Amer. J. Bot., 63, 335-344.Google Scholar
  155. Torrey, J. G. (1990). Cross-inoculation groups within Frankia. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 83-106). New York: Academic Press.Google Scholar
  156. Valverde, C., and Wall, L. G. (1999). Regulation of nodulation in Discaria trinervis(Rhamnaceae)-Frankia symbiosis. Can. J. Bot., 77, 1302-1310.Google Scholar
  157. Wall, L. G. (2000). The actinorhizal symbiosis. J. Plant Growth Regul., 19, 167-182.PubMedGoogle Scholar
  158. Wolters, D. J., van Dijk, C., Zoetendal, E. G., and Akkermans, A. D. L. (1997). Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. nodules from wetland soil inoculants. Mol. Ecol., 6, 971-981.PubMedGoogle Scholar
  159. Woronin, M. (1866). über die bei der schwarzerle (Alnus glutinosa) und bei der gewöhnlichen gartenlupine (Lupinus mutabilis) auftretenden wurzelanschwellungen. Mem. Acad. Imp. Sci. St. Petersburg, Ser. 7 T., 10, 1-13.Google Scholar
  160. Yokoyama, J., Suzuki, M., Iwatsuki, K., and Hasebe, M. (2000). Molecular phylogeny of Coriaria, with special emphasis on the disjunct distribution. Mol. Phylogenet. Evol., 14, 11-19.PubMedGoogle Scholar
  161. Zhang, Z., Lopez, M., and Torrey, J. G. (1984). A comparison of the cultural characteristics and infectivity of Frankia isolates from root nodules of Casuarina species. Plant Soil, 78, 79-90.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • S. M. Swensen
    • 1
  • D. R. Benson
    • 2
  1. 1.Department of Biology, Ithaca CollegeIthacaUSA
  2. 2.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations