Skip to main content

Frankia And Actinorhizal Plants: A Historical Perspective

  • Chapter
Nitrogen-fixing Actinorhizal Symbioses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimov, V. N., and Dobritsa, S. V. (1992). Grouping of Frankiastrains on the basis of DNA relatedness. Syst. Appl. Bacteriol., 15, 372–379.

    CAS  Google Scholar 

  • Akkermans, A. D. L. (1971). Nitrogen fixation and nodulation of Alnus and Hippophaë under natural conditions. Ph.D. thesis, University of Leiden, The Netherlands, 85 pp. Dordrecht, The Netherlands: Publisher Dordtse Sociale Werkplaats.

    Google Scholar 

  • Akkermans, A. D. L., and van Dijk, C. (1981). Non-leguminous root-nodule symbioses with actinomycetes and Rhizobium. In W. J. Broughton (Ed.), Nitrogen fixation. Vol. 1. Ecology (pp. 57-103). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Akkermans, A. D. L., Mirza, M. S., Harmsen, H J. M., Blok, H. J. Sessitsch, A., and Akkermans, W. M. (1994). Molecular ecology of microbes: A review of promises, pitfalls and true progress. FEMS Microbiol. Rev.,15, 185–194.

    Article  CAS  Google Scholar 

  • Akkermans, A. D. L., Baker, D., Huss-Danell, K., and Tjepkema, J. D. (1984). Frankia symbioses. Proceedings of Workshop. Plant Soil, 78, 1-2.

    Google Scholar 

  • Akkermans, A. D. L., van Dijk, C., and Oremus, P. A. I. (1983). Frankia: Tool and toy of the microbiologist. Bio-essays to Dr. A. Quispel. University of Leiden, 5-10.

    Google Scholar 

  • Allen, E. K., and Allen, O. N. (1965). Nonleguminous plant symbioses. In C. M. Gilmour, and O. N. Allen (Eds.), Microbiology and soil fertility (pp. 77-106). Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Alskog, G., and Huss-Danell, K. (1997). Superoxide dismutase, catalase and nitrogenase activities of symbiotic Frankia (Alnus incana) in response to different oxygen tensions. Physiol. Plant., 99, 286-292.

    Article  CAS  Google Scholar 

  • Aronson, D. B., and Boyer, G. L. (1993). Frankia produces a hydroxamate siderophores under iron limitation. J. Plant Nutr., 16, 2193-2201.

    Google Scholar 

  • Baker, A., Hill, G. F., and Parsons, R. (1997a). Alteration of N nutrition in Myrica gale induces changes in nodule growth, nodule activity and amino acid composition. Physiol. Plant., 99, 632-639.

    Article  CAS  Google Scholar 

  • Baker, A., Hill, G. F., and Parsons, R. (1997b). Evidence for N feedback regulation of N2 fixation in Alnus glutinosa. J. Exp. Bot., 48, 67-74.

    Article  CAS  Google Scholar 

  • Baker, D. D. (1987). Relationships among pure cultured strains of Frankia based on host specificity. Physiol. Plant., 70, 245-248.

    Article  Google Scholar 

  • Baker, D. D., and Berry, A. (1994). A tribute to John G. Torrey 1921-1993. Soil Biol. Biochem., 26, vii-viii.

    Article  Google Scholar 

  • Baker, D. D., and Torrey, J. G. (1979). The isolation and cultivation of actinomycetous root nodule endophytes. In J. C. Gordon, D. A. Perry, and C. T. Wheeler (Eds.), Symbiotic nitrogen fixation in the management of temperate forests(pp. 38-56). Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Baker, D. D., Pengelly, W. L., and Torrey, J. G. (1981). Immunological analysis of relationships among the isolated frankiae (Actinomycetales). Int. J. Syst. Bacteriol., 31, 148-151.

    Google Scholar 

  • Becking, J. H. (1970). Frankiaceae fam. Nov. (Actinomycetales) with one new combination and six new species of the genus FrankiaBrunchorst 1886. Int. J. System. Bacteriol., 20, 201-220.

    Google Scholar 

  • Beckwith, J., Tjepkema, J. D., Cashon, R. E., Schwintzer, C. R., and Tisa, L. S. (2002). Hemoglobin in five genetically diverse Frankia strains. Can. J. Microbiol., 48, 1048-1055.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, L. F., and Berry, A. M. (1997). Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia(Actinomycetales). Physiol. Plant., 99, 588-593

    Article  CAS  Google Scholar 

  • Benson, D. R., Arp. D. J., and Burris, R. H. (1980). Cell free nitrogenase and hydrogenase from actinorhizal root nodules. Science, 205, 688-689.

    Article  Google Scholar 

  • Benson, D. R., and Clawson, M. L. (2000). Evolution of the actinorhizal plant symbioses. In E. W. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system for analysis of a biological process (pp. 207-224). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Benson, D. R., and Silvester, W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev., 57, 293-319.

    PubMed  CAS  Google Scholar 

  • Berg, R. H. (1990). Cellulose and xylans in the interface capsule in symbiotic cells of actinorhizae. Protoplasma, 159, 35-43.

    Article  CAS  Google Scholar 

  • Berg, R. H., and McDowell, L. (1987). Endophyte differentiation in Casuarinaactinorhizae.Protoplasma, 136, 104-117.

    Article  Google Scholar 

  • Berliner, R., and Torrey, J. G. (1988). On tripartite Frankia-mycorrhizal associations in the Myricaceae. Can. J. Bot., 67, 1708-1712.

    Google Scholar 

  • Berry, A. M. (1994). Recent developments in the actinorhizal symbiosis. Plant Soil, 161, 135-145.

    Article  Google Scholar 

  • Berry A. M., and Myrold, D. D. (Eds.) (1997). Proceedings of the 10th international conference on Frankia and actinorhizal plants. Physiol. Plant., 99, 564-731.

    Google Scholar 

  • Berry, A. M., and Sunell, L. A. (1990). The infection process and nodule development. In C. R. Schwintzer, and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 61-82). San Diego, CA: Academic Press.

    Google Scholar 

  • Berry, A. M., Kahn, R. K. S., and Booth, M. C. (1989). Identification of indole compounds secreted by FrankiaHFPArI3 in defined culture conditions. Plant Soil, 118, 205-209.

    Article  CAS  Google Scholar 

  • Berry, A. M, Moreau, R. A., and Jones, A. D. (1991). Bacteriohopanetetrol: Abundant lipid in Frankiacells and in nitrogen-fixing nodule tissue. Plant Physiol., 95, 111-115.

    PubMed  CAS  Google Scholar 

  • Berry, A. M., Harriot, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., and Jones, A. D. (1993). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Nat. Acad. Sci. U.S.A., 90,6091-6094.

    Google Scholar 

  • Bond, G. (1955). An isotopic study of the fixation of nitrogen associated with nodulated plants of Alnus, Myricaand Hippophae. J. Exp. Bot., 6, 303-311.

    Article  CAS  Google Scholar 

  • Bond, G. (1956). Evidence for fixation of nitrogen by root nodules of alder ( Alnus) under field conditions. New Phytol., 55, 147-153.

    Article  CAS  Google Scholar 

  • Bond, G. (1973) Root nodule symbioses with actinomycete-like organisms. In A. Quispel (Ed.), The biology of nitrogen fixation (pp. 342-378). Amsterdam, The Netherlands: North Holland Publishing Company.

    Google Scholar 

  • Bond, G. (1976). The results of the IBP survey of root-nodule formation in non-leguminous angiosperms. In P.S. Nutman (Ed.), Symbiotic nitrogen fixation in plants (pp. 443-474). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Bond, G. (1983). Taxonomy and distribution of non-legume nitrogen-fixing systems. In J.C. Gordon and C. T. Wheeler (Eds.), Biological nitrogen fixation in forest ecosystems: Foundations and applications (pp. 55-88). The Hague, The Netherlands: Martinus Nijhoff/Dr. W. Junk Publishers.

    Google Scholar 

  • Bormann B. T., and Sidle, R. C. (1990). Changes in productivity and distrubtion of nutrients in a chronosequence at Glacier Bay National Park, Alaska. J. Ecol., 78, 561-578.

    Article  Google Scholar 

  • Boyer, G. L., Kane, S. A., Alexander, J. A., and Aronson, D. B. (1999). Siderophore formation in iron-limited cultures of Frankia sp. strain 52065 and Frankia sp. strain CeSI5. Can. J. Bot., 77, 1316-1320.

    Article  CAS  Google Scholar 

  • Brunchorst, J. (1886-1888). über einige wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Untersuch. Bot. Instit. Tübingen, 2, 150-177.

    Google Scholar 

  • Callaham, D., Del Tredici, P., and Torrey, J. G. (1978). Isolation and cultivation in vitro of the actinomycetes causing root nodulation in Comptonia. Science, 199, 899-902.

    CAS  Google Scholar 

  • Caucas, V., and Abril, A. (1996). Frankia sp. infects Atriplex cordobensis. Cross-inoculation assays and symbiotic efficiency. Phyton, 59, 103-110.

    Google Scholar 

  • Cérémonie, H., Cournoyer, B., Maillet, F., Normand, P., and Fernandez, M. P. (1998). Genetic complementation of rhizobial nod mutants with Frankia DNA: Artifact or reality? Mol. Gen. Genet., 260,115-119.

    Google Scholar 

  • Cérémonie, H., Debelle, F., and Fernandez, M. P. (1999). Structural and functional comparison of Frankia root hair deforming factor and rhizobial Nod factor. Can. J. Bot., 77, 1293-1301.

    Article  Google Scholar 

  • Chapin, F. S. I., Walker, L. R., Fastie, C. L., and Sharman, L. C. (1994). Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr., 64, 149-175.

    Article  Google Scholar 

  • Chatarpaul, L., Chakravarty, P., and Subramaniam, P. (1989). Studies in tetrapartite symbioses. I. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil, 118, 145-150.

    Article  Google Scholar 

  • Chaudhary, A. H. (1979). Nitrogen-fixing root nodules in Datisca cannabina L. Plant Soil, 51, 163-165.

    Article  CAS  Google Scholar 

  • Crocker, R. L., and Major, J. (1955). Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol., 43, 427-448.

    Article  Google Scholar 

  • Daft, M. J., Clelland, D. M., and Gardner, I. C. (1985). Symbiosis with endomycorrhizas and nitrogen-fixing organisms. Roy. Soc. Edinburgh B., 85, 283-298.

    Google Scholar 

  • Davenport, H. E. (1960). Haemoglobin in the root nodules of Casuarina cunninghamiana. Nature, 186, 653-654.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, J. O. (1983). Dinitrogen fixation in forest ecosystems. Can. J. Microbiol., 29, 979-992.

    CAS  Google Scholar 

  • Dawson, J. O. (1986). Actinorhizal plants - their use in forestry and agriculture. Outlook Agric., 15, 202-298.

    Google Scholar 

  • Dawson, J. O. (1990). Interactions among actinorhizal and associated plant species. In C. R. Schwintzer, and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 299-316). San Diego, CA: Academic Press.

    Google Scholar 

  • Dawson, J. O, Berg, R. H., Paschke, M. W., and Wheeler, C. T. (1999). The 11th international conference on Frankia and actinorhizal plants at Champaign. Can. J. Bot., 77, 1203-1400.

    Article  Google Scholar 

  • Diem, H. G. (1996). Les mycorrhizes des plantes actinorhiziennes. Acta Bot. Gall., 143, 581-592.

    Google Scholar 

  • Diem, H. G., and Arahou, M. (1996). A review of cluster root formation: A primary strategy of Casuarinaceae to overcome soil nutrient deficiency. In K. Pinyopusarek, J. W. Turnbull, and S. J. Midgley (Eds.), Recent Casuarina research and development, Proceedings of the 3 rd internationalCasuarina workshop, Da Nang (pp. 51-58). Canberra, Australia: CSIRO.

    Google Scholar 

  • Diem, H. G., and Dommergues, Y. R. (1990). Current and potential uses and management of Casuarinaceae in the Tropics. In C. R. Schwintzer, and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 317-342). San Diego, CA: Academic Press.

    Google Scholar 

  • Diem, H. G., Duhoux, E., and Arahou, M. (2000). Cluster roots in Casuarinaceae: Role and relationship to soil nutrient factors. Ann. Bot., 85, 929-936.

    Article  CAS  Google Scholar 

  • Domenach, A. M., Kurdali, F., and Bardin, R. (1989). Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance. Plant Soil, 118, 51-59.

    Article  CAS  Google Scholar 

  • Dommergues, Y. R. (1997). Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol. Biochem., 29, 931-941.

    Article  CAS  Google Scholar 

  • Duhoux, E., and Diem, H. G. (Eds.) (1996). Les plantes actinorhiziennes. Acta Bot. Gall., 143,563-679.

    Google Scholar 

  • Duhoux, E., Franche, C., Bogusz, D., Diouf, D., Le, V.Q., Gherbi, H., Sougoufara, B., Le Roux, C., and Dommergues, Y. R. (1996). Casuarina and Allocasuarinaspecies. In Y. P. S Bajaj (Ed.), Trees IV. (pp. 76-94). Berlin: Springer-Verlag.

    Google Scholar 

  • Duhoux, E., Rinaudo, G., Diem, H. G., Auguy, F., Fernandez, D., Bogusz, D., Franche, C., Dommergues, Y., and Huguenin, B. (2001). Angiosperm Gymnostoma trees produce root nodules colonized by arbuscular mycorrhizal fungi related to Glomus. New Phytol., 149, 115-125.

    Article  Google Scholar 

  • Edmands, J., Noridge, N. A., and Benson, D. R. (1987). The actinorhizal root-nodule symbiont Frankia sp. CpI1 has two glutamine synthetases. Proc. Natl. Acad. Sci. U.S.A., 84, 6126-6130.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, M. P., Meugnier, H., Grimont, P. A. D., and Bardin, R. (1989). Deoxyribonucleic acid relatedness among members of the genus Frankia. Int. J. Syst. Bacteriol., 39, 424-429.

    Article  Google Scholar 

  • Franche, C., Laplaze, L. Duhoux, E., and Bogusz, D. (1998). Actinorhizal symbioses: Recent advances in plant molecular and genetic transformation studies. Crit. Rev. Plant Sci., 17, 1-28.

    Article  CAS  Google Scholar 

  • Franche, C., N’Diaye, A., Gobe, C., Alloneu, C. Bogusz, D., and Duhoux E. (1999a). Genetic transformation of Allocasuarina verticillata. In Y. P. S Bajaj (Ed.), Biotechnology in agriculture and forestry, 44. Transgenic trees (pp. 1-14). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Franche, C., Bogusz, D., Smouni, A., Diouf, D., and Duhoux E. (1999b). Genetic transformation of Casuarina glauca. In Y. P. S Bajaj (Ed.), Biotechnology in agriculture and forestry, 44. Transgenic trees (pp. 15-28). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Gardner, I. C. (1986). Mycorrhizae of actinorhizal plants. MIRCEN J., 2, 147-160.

    Article  Google Scholar 

  • Gauthier, D., Diem, H. G., and Dommergues, Y. R. (1985). Assessment of N2 fixation by Casuarina equisetifolia inoculated with Frankia ORS021001 using 15N methods. Soil Biol. Biochem., 17, 375-379.

    Article  CAS  Google Scholar 

  • Gherbi, H., Duhoux, E., Franche, C., Pawlowski, K., Nassar, A., Berry, A. M., and Bogusz, D. (1997). Cloning of a full-length hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodule. Physiol. Plant., 99, 608-616.

    Article  CAS  Google Scholar 

  • Gordon, J. C., Perry, D. A., and Wheeler, C. T. (Eds.) (1979). Symbiotic nitrogen fixation in the management of temperate forests (501 pp.). Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Guan, C., Wolters, D. J., van Dijk, C., Akkermans, A. D. L., van Kammen, A., Bisseling, T., and Pawlowski, K. (1996). Gene expression in ineffective actinorhizal nodules of Alnus glutinosa. Acta Bot. Gall., 143, 613-620.

    Google Scholar 

  • Gupta, R. K., Dobritsa, S. V., Stiles, C. A., Essington, M. E., Liu, Z. Y., Chen, C.-H., Serpersu, E. H., and Mullin, B. C. (2002). Metallohistins: A new class of plant metal-binding proteins. J. Protein Chem., 21, 529-536.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, D., Lechevalier, M. P., Fischer, A., and Stackebrandt, E. (1989). Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus and “Blastococcus” and emendation of the family Frankiaceae. Syst. Appl. Microbiol., 11, 236-242.

    CAS  Google Scholar 

  • Hahn, D., Starrenburg, M. J. C., and Akkermans, A. D. L. (1990). Oligonucleotide probes that hybridise with rRNA as a tool to study Frankia strains in root nodules. Appl. Env. Microbiol., 56, 1342-1346.

    CAS  Google Scholar 

  • Hahn, D., Nickel, A., and Dawson, J. (1999). Assessing Frankia populations in plants and soil using molecular methods. FEMS Microbiol. Ecol., 29, 215-227.

    Article  CAS  Google Scholar 

  • Hammad, Y., Maréchal, J., Cournoyer, B., Normand, P., and Domenach, A. M. (2001). Modification of the protein expression pattern induced in the nitrogen-fixing actinomycete Frankia sp. strain ACN14a-tsr by root exudates of its symbiotic host Alnus glutinosa and cloning of the sodF gene. Can. J. Microbiol., 47, 541-547.

    Article  PubMed  CAS  Google Scholar 

  • Hammad, Y., Nalin, R., Maréchal, J., Fiasson, K., Pepin, R., Berry, A.M., Normand, P., and Domenach, A. M. (2003). A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil, 254, 193-205.

    Article  CAS  Google Scholar 

  • Handley, L. L., and Raven, J. A. (1992). The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ., 15, 965-985.

    Article  CAS  Google Scholar 

  • Harris S. L., and Silvester, W. B. (Eds.) (1994). Frankia and actinorhizal plants: 9th international conference. Soil Biol. Biochem., 26, 525-661.

    Article  Google Scholar 

  • Hiltner, L. (1895). über die Bedeutung der Wurzelknöllchen von Alnus glutinosa für die Stickstoffernährung dieser Pflanze . Landwirtsch. Vers.-Stn., 46, 153-161.

    CAS  Google Scholar 

  • Hogberg, P. (1997). 15N natural abundance in soil-plant systems. New Phytol., 137, 179-203.

    Article  Google Scholar 

  • Holman, R. M., and Schwintzer, C. R. (1987). Distribution of spore-positive and spore-negative nodules of Alnus incanassp. rugosa in Maine, USA. Plant Soil, 104, 103-111.

    Article  Google Scholar 

  • Hönerlage, W., Hahn, D., Zepp, K. Zeyer, J., and Normand, P. (1994). A hypervariable 23S rRNA region provides a discriminating target for specific characterisation of unculured and cultured Frankia. Syst. Appl. Microbiol., 17, 433-443.

    Google Scholar 

  • Hughes, M., Donnelly, C., Crozier, A., and Wheeler, C. T. (1999). Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can. J. Bot., 77, 1311-1315.

    Article  CAS  Google Scholar 

  • Hurd, T. M., Raynal, D. J., and Schwintzer, C. R. (2001). Symbiotic N2 fixation of Alnus incana ssp. rugosain shrub wetlands of the Adirondack Mountains, New York. Oecologia,126, 94-103.

    Article  Google Scholar 

  • Huss-Danell, K. (1990). The physiology of actinorhizal nodules. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 61-82). San Diego, CA: Academic Press.

    Google Scholar 

  • Huss-Danell, K. (1997). Actinorhizal symbioses and their N2 fixation. New Phytol., 136, 375-405.

    Article  CAS  Google Scholar 

  • Huss-Danell, K., and Bergman, B. (1990). Nitrogenase in Frankia from root nodules of Alnus incana (L.) Moench: Immunolocalization of the Fe- and MoFe- proteins during vesicle differentiation. New Phytol., 116, 443-455.

    Article  Google Scholar 

  • Huss-Danell, K., and Wheeler, C. T. (Eds.) (1987). Frankia and actinorhizal plants. Proceedings of the international meeting, Umeå, Sweden. Physiol. Plant., 70, 235-377.

    Google Scholar 

  • Isopi, R., Lumini, E., Frattegiani, M., Puppi, P., Bosco, M., Favilli, F., and Buresti, E. (1994). Inoculation of Alnus cordata with selected microsymbionts: Effects of Frankia and Glomusspp. on seedling growth and development. Symbiosis, 17, 237-245.

    Google Scholar 

  • Jeong, S. C., Ritchie N. J., and Myrold, D. D. (1999). Molecular phylogenies of plants and Frankiasupport multiple origins of actinorhizal symbioses. Mol. Phylogen. Evol., 13, 493-503.

    Article  CAS  Google Scholar 

  • Johnson, L. A. S. (1980). Notes on Casuarinaceae (I). Telopea, 2, 83-84.

    Google Scholar 

  • Johnson, L. A. S. (1980). Notes on Casuarinaceae (II) J. Adelaide Bot. Gard., 6, 73-87.

    Google Scholar 

  • Johnson, L. A. S. (1980). Notes on Casuarinaceae (III) Telopea, 3, 133-137.

    Google Scholar 

  • Johnson, G. V., Schwintzer, C. R., and Tjepkema, J. D. (1997). The acetylene induced decline in nitrogenase activity in root nodules of Elaeagnus angustifolia. Plant Soil, 191, 157-161.

    Article  CAS  Google Scholar 

  • Kim, H. B., and An, C. S. (2002). Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of Elaeagnus umbellata. Mol. Plant-Microbe Interact., 15, 209-215.

    Article  PubMed  CAS  Google Scholar 

  • Kleemann, G., Alskog, G., Berry, A. M., and Huss-Danell, K. (1994). Lipid-composition and nitrogenase activity of symbiotic Frankia (Alnus incana) in response to different oxygen concentrations. Protoplasma, 183, 107-115.

    Article  CAS  Google Scholar 

  • Kohls, S. J., van Kessel, C., Baker, D. D., Grigal, D. F., and Lawrence, D. B. (1994). Assessment of N2 fixation and N cycling by Dryas along a chronosequence within the forelands of the Athabaca Glacier, Canada. Soil Biol. Biochem., 26, 623-632.

    Article  CAS  Google Scholar 

  • Lalonde, M., and Camire, C. (Eds.) (1985). Frankia and actinorhizal plants. Proceedings of the international meeting, Quebec, Canada. Plant Soil, 87, 1-208.

    Google Scholar 

  • Laplaze, L., Bon, M-C., Sy, M.O., Smouni, A., Alloneu, C., Auguy, F., Thierry, F., Rio, M., Guermache, F., Duhoux E., Franche, C., and Bogusz, D. (2000). Molecular biology of tropical nitrogen-fixing trees in the Casuarinaceae family. In S. M. Jain and S. C. Minoicha (Eds.), Molecular biology of woody plants, I. (pp. 269-285). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Lawrence, D. B., Schoenike, R. E., Quispel, A., and Bong, G. (1967). The role of Dryas drummondii in vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. J. Ecol., 55, 793-813.

    Article  Google Scholar 

  • Leaf, G., Gardner, I. C., and Bond, G. (1958). Observations on the composition and metabolism of the nitrogen-fixing root nodules of Alnus. J. Exp. Bot., 9, 320-331.

    Article  CAS  Google Scholar 

  • Lechevalier, M. P. (1983). Cataloging Frankia strains. Can. J. Bot., 61, 2964-2967.

    Google Scholar 

  • Lechevalier, M. P. (1984). The taxonomy of the genus Frankia. Plant Soil, 78, 1-6.

    Article  Google Scholar 

  • Lechevalier, M. P. (1986). Catalog of Frankiastrains. Actinomycetes, 19, 131-162.

    Google Scholar 

  • Lechevalier, M. P., and Lechevalier, H. A. (1990). Systematics, isolation and culture of Frankia. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 35-60). San Diego, CA: Academic Press.

    Google Scholar 

  • Lindblad, P., and Sellstedt, A. (1989). Immunogold localization of hydrogenase in free-living Frankia CpI1. FEMS Microbiol. Lett., 60, 311-316.

    Article  CAS  Google Scholar 

  • Lumini, E., Bosco, M., Puppi, G., Isopi, R., Frattegiani, M., Buresti, E., and Favilli, F. (1994). Field performance of Alnus cordata Loisel (Italian alder) inoculated with Frankiaand VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biol. Biochem., 26, 659-661.

    Article  Google Scholar 

  • Lundquist, P.-O., And Huss-Danell, K. (1992). Immunological Studies Of Glutamine Synthetase In Frankia-Alnus Incana Symbioses. Fems Microbiol. Lett., 91, 141-146.

    Article  CAS  Google Scholar 

  • Maréchal, J., Clement, B., Nalin, R., Gandon, C., Orso, S., Cvejic, J. H., Bruneteau, M., Berry, A., and Normand, P. (2000). ArecA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus. Int. J. Syst. Evol. Microbiol., 50, 781-785.

    PubMed  Google Scholar 

  • Maréchal, J., Santos, R., Hammad, Y., Alloisio, N., Domenach, A. M., and Normand, P. (2003). Characterization of the sodF gene region of Frankiasp. strain ACN14a and complementation of Escherichia coli sod mutant. Can J. Microbiol., 49,294-300.

    Article  PubMed  Google Scholar 

  • Marriotti, A., Sougoufara, B., and Dommergues, Y. R. (1992). Estimation de la fixation d’azote atmosphérique par le tracage isotopique naturel dans une plantation de Casuarina equisetifolia (Forst.). Soil Biol. Biochem., 24, 647-653.

    Article  Google Scholar 

  • Mattsson, U., Johansson, L., Sandström, G., and Sellstedt, A. (2001). Frankia KB5 possesses a hydrogenase immunologically related to membrane-bound [NiFe]-hydrogenases. Curr. Microbiol., 42, 438-441.

    Article  PubMed  CAS  Google Scholar 

  • McClure, P. R., Coker, G. T., and Schubert, K. R. (1983). CO2 fixation in roots and nodules of Alnus glutinosa: Role of PEP carboxylase and carbamyl phosphate synthetase in dark CO2 fixation, citrulline biosynthesis and N2 fixation . Plant Physiol., 71, 652-657.

    PubMed  CAS  Google Scholar 

  • McEwan, N. R., Gould, E. M. O., Lumini, E., McNeill, J. D., and Wheeler, C. T. (1996). Competitivity and persistence of Frankia in a managed environment. In K. A. Malik, M. S. Mirza, and J. K. Ladha (Eds.), Nitrogen fixation with non-legumes. Proceedings of the 7 th international symposium, Faisalabad (pp. 315-326). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • McKee, H. S. (1962). Fixation of free atmospheric nitrogen. In H. S. McKee (Ed.), Nitrogen metabolism in plants (pp. 39-102). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Meesters, T. M., van Vliet, W. M., and Akkermans, A. D. L. (1987). Nitrogenase is restricted to the vesicles in Frankia strain EAN1pec. Physiol. Plant., 70, 267-271.

    Article  CAS  Google Scholar 

  • Meyen, J. (1829). über das hervorwachsen parasitischer gebilde aus den wurzeln anderer pflanzen. Flora (Jena), 12, 49-64.

    Google Scholar 

  • Miller, I. M., and Baker, D. D. (1985). Initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma, 128, 107-119.

    Article  Google Scholar 

  • Molina, R. (1981). Ectomycorrhizal specificity in the genus Alnus. Can. J. Bot., 59, 325-334.

    Google Scholar 

  • Mort, A., Normand, P., and Lalonde, M. (1983). 2-O-methyl-D-mannose, a key sugar in the taxonomy of Frankia. Can. J. Microbiol., 29, 993-1002.

    CAS  Google Scholar 

  • Mullin, B. C., and Dobritsa, S. V. (1996). Molecular analysis of actinorhizal symbiotic systems: Progress to date. Plant Soil, 186, 9-20.

    Article  CAS  Google Scholar 

  • Murry, M. A., and Lopez, M. F. (1989). Interaction between hydrogenase, nitrogenase and respiratory activities in a Frankia isolate from Alnus rubra. Can. J. Microbiol., 35, 636-641.

    Article  PubMed  CAS  Google Scholar 

  • Murry, M. A., Zhang, Z., and Torrey, J. G. (1985). Effect of O2on vesicle formation, acetylene reduction and O2-uptake kinetics in Frankia sp. HFPCcI3 isolated from Casuarina cunninghamiana. Can. J. Microbiol., 31, 804-809.

    PubMed  CAS  Google Scholar 

  • Nazaret, S., Cournoyer, B., Normand, P., and Simonet, P. (1991). Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences. J. Bacteriol., 173, 4072-4078.

    PubMed  CAS  Google Scholar 

  • Normand, P., and Lalonde, M. (1986). The genetics of actinorhizal Frankia; a review. In F. A. Skinner and P. Uomala (Eds.), Nitrogen fixation with non-legumes (pp. 429-454). Dordrecht, The Netherlands: Martinus Nijhoff Publishers.

    Google Scholar 

  • Normand, P., Fernandez, M., Simonet, P., and Domenach, A. M. (1992). Frankiaand actinorhizal plants. Proceedings of the 8th international conference, Lyon, France. Acta Oecol., 13, 1-516.

    Google Scholar 

  • Normand, P., Pawlowski, K., and Dawson, J. O. (Eds.) (2003). Frankia symbiosis. Proceeding of the 12th meeting on Frankiaand actinorhizal plants, Carry-le-Rouet, France, June 2001. Plant Soil, 254, 1-244.

    Google Scholar 

  • Nutman, P. S. (1990). George Bond. Biograph. Mem. Fellows Roy. Soc., 36, 61-82.

    Google Scholar 

  • Okubara, P. A., Fujishige, N. A., Hirsch, A. M., and Berry, A. M. (2000). Dg93, a nodule abundant mRNA of Datisca glomerata with homology to a soybean early nodulin gene. Plant Physiol., 122, 1073-1079.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, R., and Sunley, R. J. (2001). Nitrogen nutrition and the role of root-shoot nitrogen signalling particularly in symbiotic systems. J. Exp. Bot., 52, 435-443.

    PubMed  CAS  Google Scholar 

  • Parsons, R., Stanforth, A., Raven, J. A., and Sprent, J. I. (1993). Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ., 16, 125-136.

    Article  CAS  Google Scholar 

  • Parsons, R., Silvester, W. B., Harris, S., Gruitjers, W. T. M., and Bullivant, S. (1987). Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol., 83,728-731.

    PubMed  CAS  Google Scholar 

  • Pawlowski K., and Bisseling, T. (1996). Rhizobial and actinorhizal symbioses: What are the shared features? Plant Cell, 8, 1899-1913.

    Article  PubMed  CAS  Google Scholar 

  • Perinet, P., and Lalonde, M. (1983). Axenic nodulation of in vitro propagated Alnus glutinosaplantlets by Frankia strains. Can. J. Bot., 61, 2883-2888.

    Article  Google Scholar 

  • Perinet, P., Brouillette, J. G., Fortin, J. A., and Lalonde, M. (1985). Large scale inoculation of actinorhizal plants with Frankia. Plant Soil, 87, 175-184.

    Article  Google Scholar 

  • Pinyopusarek, K., Yurnbull, J. W., and Midgley, S. J. (1996). RecentCasuarina research and development, Proceedings of the 3 rd internationalCasuarina workshop, Da Nang (pp. 247). Canberra, Australia: CSIRO.

    Google Scholar 

  • Pommer, E. H. (1959). über die isolierung des endophyten aus den wurzelknöllchen von Alnus glutinosa Gaertn. und über erfolgreiche reinfektionsversuche. Ber. Dtsch. Bot. Ges., 72, 138-150.

    Google Scholar 

  • Probanza, A., Lucas, J. A., Acero, N., and Gutierrez Manero, F. J. (1996). The influence of native rhizobacteria on European alder (Alnus glutinosa(L.) Gaertn.) growth. Plant Soil, 182, 59-66.

    Article  CAS  Google Scholar 

  • Puppo, A., Dimitrijevic, L., and Rigaud, J. (1989). Superoxide dismutase and catalase activities in purified Frankia vesicles. Physiol. Plant., 77, 308-311.

    Article  CAS  Google Scholar 

  • Quispel, A. (1954). Symbiotic nitrogen fixation in non-leguminous plants. 2. The influence of inoculation density and external factors on the nodulation of Alnus glutinosa and its importance to our understanding of the mechanism of infection. Acta Bot. Neerl., 3, 495-511.

    CAS  Google Scholar 

  • Quispel, A. (1955). Symbiotic nitrogen fixation in non-leguminous plants. 3. Experiments on the growth in vitro of the endophyte of Alnus glutinosa. Acta Bot. Neerl., 4, 671-689.

    CAS  Google Scholar 

  • Quispel, A. (1960). Symbiotic nitrogen fixation in non-leguminous plants. 5. The growth requirements of the endophyte of Alnus glutinosa. Acta Bot. Neerl., 9, 380-396.

    CAS  Google Scholar 

  • Quispel, A. (1974). The endophytes of the root nodules in non-leguminous plants. In A. Quispel (Ed.), The biology of nitrogen fixation (pp. 499-520). Amsterdam, The Netherlands: North Holland Publishing Company.

    Google Scholar 

  • Quispel, A. (1990). Discoveries, discussions and trends in research on actinorhizal root nodule symbioses before 1978. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 15-33). San Diego, CA: Academic Press.

    Google Scholar 

  • Quispel, A., and Tak, T. (1968). Studies on the growth of the endophyte of Alnus glutinosa(L.) Vill. in nutrient solutions.New Phytol., 81, 587-600.

    Article  Google Scholar 

  • Quispel, A., Svendsen A. B., Schripsems, J., Baas, W. J., Erkelens, C., and Lugtenberg, B. J. (1989). Identification of dipterocarpol as isolation factor for the induction of primary isolation of Frankia from root nodules of Alnus glutinosa(L.) Gaertner . Mol. Plant-Microbe Interact., 2, 107-112.

    Google Scholar 

  • Quispel A., Rodriguez-Barrueco, C., and Subbarao, N. S. (1993) Some general considerations on symbioses of nitrogen-fixing trees. In N. S. Subbarao, and C. Rodriguez-Barrueco (Eds.), Casuarinas (pp. 1-32). New Delhi, India: Oxford and IBH Publishing Co.

    Google Scholar 

  • Racette, S., Torrey, J. G., and Berg, R. H. (1991). Sporulation in root nodules of actinorhizal plants inoculated with pure cultured strains of Frankia. Can. J. Bot., 69, 1471-1476.

    Google Scholar 

  • Ramos, B., Garcia, J. A. L., Probanzaa, A., Domenach, J., and Manero, F. J. G. (2003). Influence of an indigenous European alder (Alnus glutinosa (L.) Gaertn.) rhizobacterium (Bacillus pumilis) on the growth of alder and its rhizosphere microbial community structure in two soils. New Forests, 25, 149-159.

    Article  Google Scholar 

  • Ribeiro, A., Akkermans, A. D. L., van Kammen, A., Bisseling, T., and Pawlowski, K. (1995). A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell, 7, 785-794.

    Article  PubMed  CAS  Google Scholar 

  • Roelofsen, W., and Akkermans, A. D. L. (1979). Uptake and evolution of H2 and reduction of C2H2 by root nodules and homogenates of Alnus glutinosa. Plant Soil, 52, 571-578.

    Article  CAS  Google Scholar 

  • Rose, S. L. (1980). Mycorrhizal associations of some actinomycete nodulated nitrogen fixing plants. Can. J. Bot., 58, 1449-1454.

    Google Scholar 

  • Ruvkun, G. B., and Ausubel, F. M. (1980). Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci. U.S.A., 77,191-194.

    Article  PubMed  CAS  Google Scholar 

  • Schaede, R. (1962). Die pflanzen symbiosen, 3rd edition (pp. 42-54). Stuttgart: Fischer.

    Google Scholar 

  • Schubert, K. R., and Evans, H. J. (1976). Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Natl. Acad. Sci. U.S.A., 73, 1207-1211.

    Article  PubMed  CAS  Google Scholar 

  • Schwencke, J., and Carú, M. (2001). Advances in actinorhizal symbiosis: Host plant- Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res. Manag., 15,285-327.

    Article  CAS  Google Scholar 

  • Schwintzer, C. R., and Tjepkema, J. D. (Eds.) (1990). The biology ofFrankia and actinorhizal plants (408 pp.). San Diego, CA: Academic Press.

    Google Scholar 

  • Schwintzer, C. R., and Tjepkema, J. D. (1990). Factors affecting the acetylene to 15N2conversion ratio in root nodules of Myrica gale (L). Plant Physiol., 106, 1041-1047.

    Google Scholar 

  • Sellstedt, A., Huss-Danell, K., and Ahlqvist, A.-S. (1986). Nitrogen fixation and biomass production in symbiosis between Alnus incana and Frankia strains with different hydrogen metabolism . Physiol. Plant., 66, 99-107.

    Article  CAS  Google Scholar 

  • Sellstedt, A., and Lindblad, P. (1990). Activities, occurrence, and localization of hydrogenase in free-living and symbiotic Frankia. Plant Physiol., 92, 809-815.

    PubMed  CAS  Google Scholar 

  • Sempavalan, J., Wheeler, C. T., and Hooker, J. E. (1995). Lack of competition between Frankia and Glomus for infection and colonisation of roots of Casuarina equisetifolia. New Phytol., 136, 429-436.

    Article  Google Scholar 

  • Sequin, A., and Lalonde, M. (1993). Modification of polypeptide patterns during nodule development in the Frankia-Alnus symbiosis. Symbiosis, 15, 135-149.

    Google Scholar 

  • Severini, G. (1922). Sui tubercoli radicali di Datisca cannabina L. Ann. Bot. (Roma), 15, 29-51.

    Google Scholar 

  • Sharma, E., and Ambasht, R. S. (1988). Nitrogen accretion and its energetics in the Himalayan alder. Funct. Ecol., 2, 229-235.

    Article  Google Scholar 

  • Sharma, E., Sharma, R., and Pradhan, M. (1998). Ecology of Himalayan alder (Alnus nepalensis D. Don) PINSA B64, 1, 59-78.

    Google Scholar 

  • Shearer, G., and Kohl, D. H. (1993). Natural abundance of 15N: Fractional contribution of two sources to a common sink and use of isotope discrimination. In R. Knowles, and T. H. Blackburn (Eds.), Nitrogen isotope techniques (pp. 89-126). San Diego, CA: Academic Press.

    Google Scholar 

  • Silvester, W. B., and Winship, L. J. (1990). Transient response of nitrogenase to acetylene and oxygen by actinorhizal nodules and cultured Frankia. Plant Physiol., 92, 480-486.

    Article  CAS  Google Scholar 

  • Silvester, W. B., Silvester, J. K., and Torrey, J. G. (1988). Adaptations of nitrogenase to varying oxygen tension and the role of the vesicle in root nodules of Alnus incana ssp. rugosa.Can. J. Bot., 66, 1772-1779.

    Google Scholar 

  • Silvester, W. B., Langenstein, B., and Berg, R. H. (1999). Do mitochondria provide the oxygen diffusion barrier in root nodules of Coriaria and Datisca? Can. J. Bot., 77, 1358-1366.

    Article  Google Scholar 

  • Simonet, P., Normand, P., Hirsch, A. M., and Akkermans, A. D. L. (1990). The genetics of the Frankia actinorhizal symbiosis. In P. M. Gresshoff (Ed.), The molecular biology of symbiotic nitrogen fixation (pp. 70-109). Boca Raton, FA: CRC Press, Inc.

    Google Scholar 

  • Simonet, P., Bosco, M., Chapelon, C., Moiroud, A., and Normand, P. (1994). Molecular characterisation of Frankia microsymbionts from spore-positive and spore-negative nodules in a natural alder stand. Appl. Env. Microbiol., 60, 1335-1341.

    CAS  Google Scholar 

  • Subbarao, N. S., and Rodriguez-Barrueco, C. (1995). Casuarinas (240 pp.). New Delhi, India: Oxford and IBH Publishing Co.

    Google Scholar 

  • Suharjo, U. K. J., and Tjepkema, J. D. (1995). Occurrence of hemoglobin in the nitrogen-fixing root nodules of Alnus glutinosa. Physiol. Plant., 95, 247-252.

    Article  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., Dowd, J. M., and Martin, P. G. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. U.S.A., 92,2647-2651.

    Google Scholar 

  • Steele, D. B., and Stowers, M. D. (1986). Superoxide dismutase and catalase in Frankia. Can. J. Microbiol., 32, 409-413.

    CAS  Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H. (1967). In situ studies on N2 fixation using the acetylene reduction technique. Proc. Natl. Acad. Sci. U.S.A., 58, 2071-2078.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, G. A., and Berry, A. M. (1988). Cytokinin secretion by Frankia sp. HFPArI3 in defined medium. Plant Physiol., 87, 15-16.

    Article  PubMed  CAS  Google Scholar 

  • Stowers, M. D. (1985). Further studies on the nodulating potential of Rubus ellipticus by the actinomycete Frankia. In H. J. Evans, P. J. Bottomley, and W. E. Newton (Eds.), Nitrogen fixation research progress (p. 702). The Hague, The Netherlands: Martinus Nijhoff.

    Google Scholar 

  • Swensen, S. M. (1996). The evolution of actinorhizal symbioses: Evidence for multiple origins of the symbiotic association. Amer. J. Bot., 83,1503-1512.

    Article  Google Scholar 

  • Swensen, S. M., and Mullin, B. C. (1997a). Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. Physiol. Plant., 99, 565-573.

    Article  CAS  Google Scholar 

  • Swensen, S. M., and Mullin, B. C. (1997b). The impact of molecular systematics on hypotheses for the evolution of root nodule symbioses and implications for expanding symbioses to new host plant genera. Plant Soil, 194, 185-192.

    Article  CAS  Google Scholar 

  • Tavares, F., Abreu, I., and Salema, R. (1998) Regeneration of the actinorhizal plant Myrica gale L. from epicotyl explants. Plant Sci., 135, 203-210.

    Article  CAS  Google Scholar 

  • Tjepkema, J. D. (1979). Oxygen relations in leguminous and actinorhizal nodules. In J. C. Gordon, D. A. Perry and C. T. Wheeler (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 175-186). Corvallis, OR: Oregon State University Press.

    Google Scholar 

  • Tjepkema, J. D., Ormerod, W., and Torrey, J. G. (1981). Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankia sp. CpI1. Can. J. Microbiol., 27, 815-823.

    Article  PubMed  CAS  Google Scholar 

  • Tjepkema, J. D., Schwintzer, C. R., and Benson, D. R. (1986). Physiology of actinorhizal nodules. Ann. Rev. Plant Physiol., 37, 209-232.

    CAS  Google Scholar 

  • Torrey, J. G. (1976). Initiation and development of root nodules of Casuarina (Casuarinaceae). Amer. J. Bot., 63, 335-344.

    Article  Google Scholar 

  • Torrey, J. G., and Tjepkema, J. D. (1979). Symbiotic nitrogen fixation in actinomycete nodulated trees: Preface. Bot. Gaz. 140 (Suppl.), i-ii.

    Article  Google Scholar 

  • Torrey, J. G., and Tjepkema, J. D. (1983). International conference on the biology of Frankia. Can. J. Bot., p61, 2765-2967.

    Google Scholar 

  • Tremblay, F. M., and Lalonde, M. (1984). Requirements for in vitro propagation of seven nitrogen-fixing Alnusspecies. Plant Cell Tisssue Organ Culture, 3, 189-199.

    Article  Google Scholar 

  • Turner, G. L., and Gibson, A. H. (1980). Measurement of nitrogen fixation by indirect means. In F. J. Bergersen (Ed.),Methods for evaluating biological nitrogen fixation (pp. 111-138). Chichester, UK: John Wiley and Sons.

    Google Scholar 

  • VandenBosch, K. A., and Torrey, J.G. (1984a). Consequences of sporangial development for nodule function in root nodules of Comptonia peregrina and Myrica gale. Plant Physiol., 76, 556-560.

    CAS  Google Scholar 

  • VandenBosch, K. A., and Torrey, J.G. (1984b). Development of endophytic Frankia sporangia in field-and laboratory-grown nodules of Comptonia peregrina and Myrica gale. Amer. J. Bot., 72, 99-108.

    Article  Google Scholar 

  • van Dijk, C. (1978). Spore formation and endophyte diversity in root nodules of Alnus glutinosa (L.) Vill. New Phytol., 81, 601-615,

    Article  Google Scholar 

  • van Dijk, C., and Merkus, E. (1976). A microscopical study of the development of a spore-like stage in the life cycle of the root nodule endophyte of Alnus glutinosa (L.) Gaertn. New Phytol., 77,73-91.

    Article  Google Scholar 

  • van Dijk, C., and Sluimer-Stolk, A. (1990). An ineffective strain type of Frankia in the soil of natural stands of Alnus glutinosa (L.) Gaertner. Plant Soil, 127, 107-121.

    Article  Google Scholar 

  • Van Ghelue, M., Lovaas, E., Ringo, E., and Solheim, B. (1997). Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol. Plant., 99, 579-587.

    Article  Google Scholar 

  • Virtanen, A. L., Moisio, Y., Allison, R. M., and Burris, R. H. (1954). Fixation of molecular nitrogen by excised nodules of the alder. Acta Chem. Scand., 8, 1730-1731.

    Article  CAS  Google Scholar 

  • Vitousek, P. M. (1989). Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, ecosystem effects . Ecol. Monogr., 59, 247-265.

    Article  Google Scholar 

  • Wall, L. G. (2000). The actinorhizal symbiosis. J. Plant Growth Reg., 19, 167-182.

    CAS  Google Scholar 

  • Wang, H.-Y., and Berry, A. M. (1996). Plant regeneration from leaf segments of Datisca glomerata. Acta Bot. Gall., 143, 609-612.

    Google Scholar 

  • Watts, S. H., Wheeler, C. T., and Hillman, J. R. (1987). Abscisic acid and dormancy in root-nodulated Alnus glutinosa. New Phytol., 105, 459-468.

    Article  CAS  Google Scholar 

  • Wheeler, C. T., Crozier, A., and Sandberg, G. (1984). The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil, 77, 99-104.

    Article  Google Scholar 

  • Wheeler, C. T., and Miller, I. M. (1990) Current and potential uses of aactinorhizal plants in Europe. In C. R. Schwintzer, and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 365-390). San Diego, CA: Academic Press.

    Google Scholar 

  • Wheeler, C. T., Henson, I. E., and McLaughlin, M. E. (1979). Hormones in plants bearing nitrogen fixing root nodules. Bot. Gaz., 140 (Suppl.), S52-S57.

    Article  Google Scholar 

  • Wheeler, C. T., Tonin, G. S., and Sutcliffe, A. (1994). Polyamines of Frankia in relation to nitrogen nutrition. Soil Biol. Biochem., 26, 577-581.

    Article  CAS  Google Scholar 

  • Winship, L. J., and Benson, D. R. (1989). Proceedings of the 7th international conference on Frankia and actinorhizal plants. Plant Soil, 118, 1-247.

    Google Scholar 

  • Winship, L. J., Martin, K. J., and Sellstedt, A. (1987). The acetylene reduction assay inactivates root nodule uptake hydrogenase in some actinorhizal plants. Physiol. Plant., 70, 361-366.

    Article  CAS  Google Scholar 

  • Wolters, D. J., van Dijk, C., Zoetendal, E. G., and Akkermans, A. D. L. (1997). Phylogenetic characterisation of ineffective Frankia in Alnus glutinosa (L.) Gaertn. nodules from wetland soil inoculants. Mol. Ecol., 6, 971-981.

    Article  PubMed  CAS  Google Scholar 

  • Woronin, M. (1885). Bemerkungen zu dem aufsatze von Herrn H. Müller über Plasmodiophora Alni. Ber. Dtsch. Bot. Ges., 5, 50-58.

    Google Scholar 

  • Yao, Y. (1995). Micropropagation of sea buckthorn (Hippophae rhamnoidesL.). Agric. Sci. Finland, 4, 503-512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Wheeler, C., Akkermans, A., Berry, A. (2008). Frankia And Actinorhizal Plants: A Historical Perspective. In: Pawlowski, K., Newton, W.E. (eds) Nitrogen-fixing Actinorhizal Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3547-0_1

Download citation

Publish with us

Policies and ethics