Skip to main content

RIEMANN-HILBERT PROBLEM AND ALGEBRAIC CURVES

  • Conference paper
  • 627 Accesses

Part of the book series: NATO Science Series ((NAII,volume 201))

Abstract

There are many problems in pure and applied mathematics that can be solved in terms of a Riemann-Hilbert (R-H problem). The list includes the remarkable class of nonlinear integrable equations, namely nonlinear equations that can be written as the compatibility conditions of linear equations. This class contains a large variety of equations: ODE’s, PDE’s difference equations, etc. Furthermore, the R-H problem formulation provides a powerful technique for obtaining asymptotic results for solutions of ODE’s and PDE’s of this class [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deift, P. and Zhou, X. (1993) A steepest descent method for oscillatory Riemann- Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math. 137, pp. 295–368.

    Article  MathSciNet  Google Scholar 

  2. Deift, P., Its, A., and Zhou, X. (1997) A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. of Math. 146(1), pp. 149–235.

    Article  MATH  MathSciNet  Google Scholar 

  3. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., and Zhou, X. (1999) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52(11), pp. 1335–1425.

    Article  MATH  MathSciNet  Google Scholar 

  4. Adler, M. and van Moerbeke, P. (1999) The spectrum of coupled random matrices, Ann. of Math. 149, pp. 921–976.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertola, M. (2003) Free energy of the two-matrix model/dToda tau-function, Nuclear Phys. B 669(3), pp. 435–461.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Aptekarev, A. I. (1999) Strong asymptotic of polynomials of simultaneous orthogonality for Nikishin systems (Russian), Mat. Sb. 190(5), pp. 3–44; translation in Sb. Math. 190 (5–6), pp. 631–669.

    MathSciNet  Google Scholar 

  7. Nikishin, E. M. (1986) Asymptotic behavior of linear forms for simultaneous Padé approximants. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. (2), pp. 33–41.

    Google Scholar 

  8. Kuijlaars, A., Stahl, H., Van Assche, W., and Wielonsky, F. (2003) Asymptotic behavior of quadratic Hermite-Padé approximants of the exponential function and Riemann-Hilbert problems C. R. Math. Acad. Sci. Paris 336(11), pp. 893–896.

    MATH  MathSciNet  Google Scholar 

  9. Enolskii, V. and Grava, T. Singular ZN curves, Riemann-Hilbert problem and modular solutions of the Schlesinger system, Intern. Math. Res. Notices to appear.

    Google Scholar 

  10. Treibich Kohn, A. (1983) Un result de Plemelj, Progr. Math. 37, pp. 307–312.

    MathSciNet  Google Scholar 

  11. Arnol’d, V. I. and Il’yashenko, Yu. S. (1985) Ordinary differential equations, in: Encyclopaedia of Mathematical Sciences, eds. V. I. Arnold and D. V. Anosov, Springer Verlag, Berlin, Title of the Russian edition: Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamrntal’nye napravlenia, Vol. 1, Dinamicheskie sistemy I, pp. 7–149.

    Google Scholar 

  12. Dekkers, W. (1979) The matrix of a connection having regular singularities on a vector bundle of rank 2 on CP 1, Lecture Notes in Mathematics 712, pp. 33–43.

    Article  MathSciNet  Google Scholar 

  13. Anosov, D. V. and Bolibruch, A. A. (1994) The Riemann-Hilbert problem, in: Aspects of Mathematics, Vol. E22, Vieweg and Sohn, Braunschweig.

    Google Scholar 

  14. Kostov, V. P. (1992) Fuchsian system on CP1 and the Riemann-Hilbert problem, C.R. Acad. Sci. Paris Ser. I Math 315, pp. 207–238.

    MathSciNet  Google Scholar 

  15. Okamoto, K. (1987) Studies on the Painlevé equations. I. Sixth Painlevé equation PV I, Annali Mat. Pura Appl. 146, pp. 337–381.

    Article  MATH  MathSciNet  Google Scholar 

  16. Umemura, H. (1990) Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J. 117, pp. 125–171.

    MATH  MathSciNet  Google Scholar 

  17. Deift, P., Its, A., Kapaev, A., and Zhou, X. (1999) On the algebro-geometric integration of the Schlesinger equations, Commun. Math. Phys. 203, pp. 613–633.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Kitaev, A. and Korotkin, D. (1998) On solutions of Schlesinger equations in terms of theta-functions, Intern. Math. Res. Notices 17, pp. 877–905.

    Article  MathSciNet  Google Scholar 

  19. Korotkin, D. Matrix Riemann-Hilbert problems related to branched coverings of CP 1, in: Operator Theory: Advances and Applications, Proceedings of the Summer School on Factorization and Integrable Systems, Algarve, September 6–9, 2000, N. Manojlovic I. Gohberg, A. F. dos Santos, eds. Boston, 2002. Birkhäuser. xxx.lanl.gov/math-ph/0106009. Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices, xxx.lanl.gov/math-ph/0306061.

    Google Scholar 

  20. Plemelj, J. (1964) Problems in the sense of Riemann and Klein, Interscience, New York, London, Sydney.

    MATH  Google Scholar 

  21. Dubrovin, B. A., Krichever, I. M., and Novikov, S. P. (2001) Integrable systems. I Dynamical systems, IV, 177–332, in: Encyclopaedia Math. Sci. 4, Springer, Berlin.

    Google Scholar 

  22. Belokolos, E. D., Bobenko, A. I., Enolskii V. Z., Its, A. R., and Matveev, V. B. (1994) Algebro Geometrical Approach to Nonlinear Integrable Equations, Springer, Berlin.

    Google Scholar 

  23. Zverovich, E. I. (1971) Boundary problems of the theory of analytic functions, Uspekhi. Matem. Nauk 31(5), pp. 113–181.

    Google Scholar 

  24. Miranda, R. (1995) Algebraic Curves and Riemann Surfaces, in: Graduate Studies in Mathematics. Amer. Math. Soc. 5 Providence, R.I.

    Google Scholar 

  25. Couveignes, J.-M. (1999) Tools for computing families of coverings, in: Aspects of Galois theory (Gainesville, FL, 1996), 38–65, London Math. Soc. Lecture Note Ser. 256, Cambridge University Press, Cambridge.

    Google Scholar 

  26. Ford, L. (1929) Automorphic Functions, McGraw-Hill, New York.

    MATH  Google Scholar 

  27. Harnad, J. and McKay, J. (2000) Modular solutions to equations of generalized Halphen type, R. Soc. Lond. Proc. Ser. A. Math. Phys. 456, pp. 261–294.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Hutchinson, J. I. (1902) On a class of automorphic functions, Trans. Amer. Math. Soc. 3, pp. 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  29. Deconinck, B. and van Hoeij, M. (2001) Computing Riemann matrices of algebraic curves, Physica D 152–153, pp. 28–46.

    Article  Google Scholar 

  30. Schlesinger, L. (1912) Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. reine angew. Math. 141, pp. 96–145.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Enolskii, V., Grava, T. (2006). RIEMANN-HILBERT PROBLEM AND ALGEBRAIC CURVES. In: Faddeev, L., Van Moerbeke, P., Lambert, F. (eds) Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete. NATO Science Series, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3503-6_7

Download citation

Publish with us

Policies and ethics