Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 201))

  • 607 Accesses

Abstract

Chaos is frequently associated with orbits homoclinic to unstable modes of deterministic nonlinear PDEs. Bilinear Hirota method was successfully employed to obtain homoclinic solutions for NLS with periodic boundaries. We propose a new method to analytically generate homo-clinic solutions for integrable nonlinear PDEs. This approach resembles the dressing method known in the theory of solitons. The pole positions in the dressing factor are given by the complex double points of the Floquet spectrum associated with unstable modes of the nonlinear equation. As an example, we reproduce first the homoclinic orbit for NLS, and then obtain the homoclinic solution for the modified nonlinear Schrödinger equation solvable by the Wadati–Konno–Ichikawa spectral problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLaughlin, D. W., Bishop, A. R., and Overman, E. A. (1988) Coherence and chaos in the driven damped sine-Gordon equation: measurement of the soliton spectrum, Physica. D. 19, pp. 1–41.

    MathSciNet  Google Scholar 

  2. McLaughlin, D. W., Bishop, A. R., Forest, M. G., and Overman, E. A. (1988) A quasiperiodic route to chaos in a near-integrable PDE, Physica. D. 23, pp. 293–328.

    MathSciNet  Google Scholar 

  3. Ablowitz, M. J. and Herbst, B. M. (1990) On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation, SIAM J. Appl. Math. 50, pp. 339–351.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ablowitz, M. J., Schober, C. M., and Herbst, B. M. (1993) Numerical chaos, roundoff errors and homoclinic manifolds, Phys. Rev. Lett. 71, pp. 2683–2686.

    Article  ADS  Google Scholar 

  5. Li, Y. and McLaughlin, D. W. (1994) Morse and Melnikov functions for NLS PDE’s, Comm. Math. Phys. 162, pp. 175–214.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Haller, G., Menon, G., and Rothos, V. M. (1999) Shilnikov manifolds in coupled nonlinear Schrödinger equations, Phys. Lett. A. 263, pp. 175–185.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. McLaughlin, D. W. and Overman, E. A. II (1995) Whiskered tori for integrable PDE’s: Chaotic behaviour in near integrable PDE’s, Surveys in Appl. Math. 1, pp. 83–200.

    MathSciNet  Google Scholar 

  8. Ablowitz, M. J., Herbst, B. M., and Schober, C. M. (2001) Discretizations, integrable systems and computation, J. Phys. A 34, pp. 10671–10693.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Hirota, R. (1980) Direct methods in soliton theory, in: Springer Topics in Current Physics, R. K. Bullough and P. J. Caudrey (eds.) Solitons, Vol. 17, Springer-Verlag, Heidelberg, pp. 157–174.

    Google Scholar 

  10. Wright, O. C. and Forest, M. G. (2000) On the Bácklund-Gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system, Physica. D. 141, pp. 104–116.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Li, Y. (2000) Bácklund-Darboux transformations and Melnikov analysis for Davey-Stewartson II equations, J. Nonlin. Sci. 10, pp. 103–131.

    Article  MATH  ADS  Google Scholar 

  12. Novikov, S. P., Manakov, S. V., Pitaevski, L. P., and Zakharov, V. E. (1984) Theory of Solitons, the Inverse Scattering Method, Consultant Bureau, New York.

    Google Scholar 

  13. Wadati, M., Konno, K., and Ichikawa, Y. H. (1979) A generalization of inverse scattering method, J. Phys. Soc. Jpn 46, pp. 1965–1966.

    Article  ADS  MathSciNet  Google Scholar 

  14. Gerdjikov, V. S., Doktorov, E. V., and Yang, J. (2001) Adiabatic interaction of N ultrashort solitons: universality of the complex Toda chain model, Phys. Rev. E. 64, 056617, 15 p.

    MathSciNet  Google Scholar 

  15. Mio, K., Ogino, T., Minami, K., and Takeda, S. (1976) Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasma, J. Phys. Soc. Jpn. 41, pp. 265–271.

    Article  ADS  MathSciNet  Google Scholar 

  16. Shchesnovich, V. S. and Doktorov, E.V. (1999) Perturbation theory for the modified nonlinear Schrödinger solitons, Physica. D. 115, pp. 115–129.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Doktorov, E., Rothos, V. (2006). HOMOCLINIC ORBITS AND DRESSING METHOD. In: Faddeev, L., Van Moerbeke, P., Lambert, F. (eds) Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete. NATO Science Series, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3503-6_6

Download citation

Publish with us

Policies and ethics