• C. Verhoeven
  • M. Musette
  • R. Conte
Part of the NATO Science Series book series (NAII, volume 201)


A few 2 + 1-dimensional equations belonging to the KP and modi- fied KP hierarchies are shown to be sufficient to provide a unified picture of all the integrable cases of the cubic and quartic Hénon–Heiles Hamiltonians.


Canonical Transformation Integrable Case Quartic Potential Partial Differential Equation System Hyperelliptic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hénon, M. and Heiles, C. (1964) The applicability of the third integral of motion: some numerical experiments, Astron. J. 69, pp. 73–79.CrossRefADSGoogle Scholar
  2. 2.
    Bountis, T. Segur, H., and Vivaldi, F. (1982) Integrable Hamiltonian systems and the Painlevé property, Phys. Rev. A. 25, pp. 1257–1264.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Chang, Y. F., Tabor, M., and Weiss, J. (1982) Analytic structure of the Hénon- Heiles Hamiltonian in integrable and nonintegrable regimes, J. Math. Phys. 23, pp. 531–538.MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Grammaticos, B., Dorizzi, B., and Padjen, R. (1982) Painlevé property and integrals of motion for the Hénon-Heiles system, Phys. Lett. A. 89, pp. 111–113.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Drach, J. (1919) Sur l’intégration par quadratures de l’équation d2y/dx2 =[ φ(x) + h]y, C.R. Acad. Sc. Paris 168 pp. 337–340.Google Scholar
  6. 6.
    Verhoeven, C., Musette, M., and Conte, R. (2002) Integration of a generalized Hénon-Heiles Hamiltonian, J. Math. Phys. 43, pp. 1906–1915. abs/nlin.SI/0112030.MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Fordy, A. P. (1991) The Hénon-Heiles system revisited, Physica. D. 52, pp. 204–210.CrossRefADSMathSciNetMATHGoogle Scholar
  8. 8.
    Jimbo, M. and Miwa, T. (1983) Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto 19, pp. 943–1001.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ramani, A., Dorizzi, B., and Grammaticos, B. (1982) Painlevé conjecture revisited, Phys. Rev. Lett. 49, pp. 1539–1541.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Grammaticos, B., Dorizzi, B., and Ramani, A. (1983) Integrability of Hamiltonians with third- and fourth-degree polynomial potentials, J. Math. Phys. 24, pp. 2289–2295.CrossRefADSMathSciNetMATHGoogle Scholar
  11. 11.
    Hietarinta, J. (1987) Direct method for the search of the second invariant, Phys. Rep. 147, pp. 87–154.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Baker, S., Enol’skii, V. Z., and Fordy, A. P. (1995) Integrable quartic potentials and coupled KdV equations, Phys. Lett. A. 201 pp. 167–174.MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Drinfel’d, V. G. and Sokolov, V. V. (1984) Lie algebras and equations of Kortewegde Vries type, Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki 24, pp. 81–180 [English: (1985) J. Soviet Math. 30, pp. 1975–2036].MathSciNetGoogle Scholar
  14. 14.
    Verhoeven, C. and Musette, M. (2003) Soliton solutions of two bidirectional sixth order partial differential equations belonging to the KP hierarchy, J. Phys. A. 36, pp. L133–L143.MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Manakov, S. V. (1973) On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Zh. Eksp. Teor. Fiz. 65, pp. 505–516 [(1974) JETP 38, pp. 248–253].ADSGoogle Scholar
  16. 16.
    Wojciechowski, S. (1985) Integrability of one particle in a perturbed central quartic potential, Physica. Scripta. 31, pp. 433–438.MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Baker, S. (1995) Squared eigenfunction representations of integrable hierarchies, PhD Thesis, University of Leeds.Google Scholar
  18. 18.
    Verhoeven, C. Musette, M., and Conte, R. (2003) General solution for Hamiltonians with extended cubic and quartic potentials, Theor. Math. Phys. 134, pp. 128–138. Scholar
  19. 19.
    Verhoeven, C. (2003) Integration of Hamiltonian systems of Hénon-Heiles type and their associated soliton equations, PhD thesis, Vrije Universiteit Brussel.Google Scholar
  20. 20.
    Satsuma, J. and Hirota, R. (1982) A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Japan 51, pp. 3390–3397.CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Sawada, K. and Kotera, T. (1974) A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equation, Prog. Theor. Phys. 51, pp. 1355–1367.MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Ramani, A. (1981) in: Fourth International Conference on Collective Phenomena, Annals of the New York Academy of Sciences, Vol. 373, ed. J. L.Lebowitz, New York Academy of Sciences, New York, pp. 54–67.Google Scholar
  23. 23.
    Kaup, D. J. (1980) On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx + 6Qψx + 6Rψ =λψ, Stud. Appl. Math. 62, pp. 189–216.Google Scholar
  24. 24.
    Dye, J. M. and Parker, A. (2001) On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves, J. Math. Phys. 42, pp. 2567–2589.MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Cosgrove, C. M. (2000) Higher order Painlevé equations in the polynomial class: I. Bureau symbol P2, Stud. Appl. Math. 104, pp. 1–65.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Drinfel’d, V. G. and Sokolov, V. V. (1981) Equations of Korteweg-de Vries type and simple Lie Algebras, Soviet Math. Dokl. 23, pp. 457–462.MATHGoogle Scholar
  27. 27.
    Bogoyavlensky, O. I. (1990), Breaking solitons in 2 + 1-dimensional integrable equations, Usp. Matem. Nauk 45 pp. 17–77 [English: (1990) Russ. Math. Surveys 45, pp. 1–86].Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • C. Verhoeven
    • 1
  • M. Musette
    • 1
  • R. Conte
    • 2
  1. 1.Dienst Theoretische NatuurkundeVrije Universiteit Brussel Pleinlaan 2BrusselsBelgium
  2. 2.Service de physique de l' état condensé (URA 2464) CEA–SaclayFrance

Personalised recommendations