Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 201))

  • 592 Accesses

Abstract

The realization of the two-dimensional Poincare algebra in terms of the noncommutative differential calculus on the algebra of functions A is considered. A is the commutative algebra of functions generated by the unitary irreducible representations of the isometry group of the De Sitter momentum space. Corresponding space-time carries the noncommutative geometry (NG) [1–14]. The Gauge invariance principle consistent with this NG is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mir-Kasimov, R. M. (2000) Phys. Part. Nucl. 31(1), p. 44.

    Google Scholar 

  2. Kadyshevsky, V. G. (1988) Nucl. Phys. B. 141, p. 477.

    ADS  MathSciNet  Google Scholar 

  3. Kadyshevsky, V. G. and Fursaev, D. V. (1990) Theor. and Math. Phys. 83, p. 197.

    Google Scholar 

  4. Mir-Kasimov, R. M. (1991) Phys. Lett. B. 259, p. 79; (1991) J. Phys. A24, p. 4283; (1996) Phys. Lett. B. 378, p. 181; (1997) Turk. J. Phys. 21, p. 472; (1997) Int. J. Mod. Phys. 12, N1, p. 24; Yadernaya Fizika, (1998) (Phys. Atom. Nucl.) 61, N11, 1951.

    ADS  MathSciNet  Google Scholar 

  5. Deser, S., Jackiw R., and Hooft, G. (1988) Ann. Phys. 117, p. 685.

    Google Scholar 

  6. Witten, E. (1988) Nucl. Phys. B311, p. 46.

    Article  ADS  MathSciNet  Google Scholar 

  7. Castellani, L. (xxxx) Non-commutative geometry and physics: a review of selected recent results, hep-th/0005210.

    Google Scholar 

  8. Hooft, G. (1996) Class. Quant. Grav. 13, p. 1023.

    Article  MATH  ADS  Google Scholar 

  9. Woronowich, S. L. (1989) Commun. Math. Phys. 122, p. 125.

    Article  ADS  Google Scholar 

  10. Wess, J. and Zumino, B. (1990) Nucl. Phys. (Proc. Suppl.) B. 18, p. 302.

    ADS  MathSciNet  Google Scholar 

  11. Dubois-Violette, M., Kerner, R., and Madore, J. (1990) J. Math. Phys. 31, p. 323.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Connes, A. (1994) Non-Commutative Geometry, Academic Press.

    Google Scholar 

  13. Madore, J. (1995) An Introduction to non-Commutative Geometry and Its Physical Applications, Cambridge University Press.

    Google Scholar 

  14. Dimakis, A. and Müller-Hoissen, F. (1998) Math. Phys. 40, p. 1518.

    Article  ADS  Google Scholar 

  15. Jackiw, R, hep-th/0212146.

    Google Scholar 

  16. Higher transcendental functions, (1953) Bateman H. Manuscript Project, Mc-Graw Hill Co. Inc., New York, Toronto, London.

    Google Scholar 

  17. Manin, Yu. I. (1988) Les publications du Centre de Recherches Mathématique, Université de Montreal.

    Google Scholar 

  18. Macfarlane, A. J. (1989) J. Phys. A. 22, p. 4581; Biedenharn, L.C. (1989) ibid 22, p. L873.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Witten, E. (1986) Nucl. Phys. B268, p. 253; Seiberg, N. and Witten, E. JHEP 9909, p. 032, hep-th/9908142.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Mir-Kasimov, R. (2006). MAXWELL EQUATIONS FOR QUANTUM SPACE-TIME. In: Faddeev, L., Van Moerbeke, P., Lambert, F. (eds) Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete. NATO Science Series, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3503-6_18

Download citation

Publish with us

Policies and ethics