Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 201))

  • 596 Accesses

Abstract

We review the integrable structure of the Dirichlet boundary problem in two dimensions. The solution to the Dirichlet boundary problem for simplyconnected case is given through a quasiclassical tau-function, which satisfies the Hirota equations of the dispersionless Toda hierarchy, following from properties of the Dirichlet Green function.We also outline a possible generalization to the case of multiply connected domains related to the multi support solutions of matrix models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hurwitz, A. and Courant, R. (1964) Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie, Springer-Verlag, (Russian translation, adapted by M. A. Evgrafov: Theory of functions, Nauka, Moscow, 1968).

    Google Scholar 

  2. Marshakov, A., Wiegmann, P., and Zabrodin, A. (2002) Commun. Math. Phys. 227, p. 131, e-print archive: hep-th/0109048.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Krichever, I. M. (1989) Funct. Anal Appl. 22, pp. 200–213.

    Article  MathSciNet  Google Scholar 

  4. Krichever, I. M. (1994) Commun. Pure. Appl. Math. 47, p. 437, e-print archive: hep-th/9205110.

    Article  MATH  MathSciNet  Google Scholar 

  5. Mineev-Weinstein, M., Wiegmann, P. B., and Zabrodin, A. (2000) Phys. Rev. Lett. 84, p. 5106, e-print archive: nlin.SI/0001007.

    Article  ADS  Google Scholar 

  6. Wiegmann, P. B. and Zabrodin, A. (2000) Commun. Math. Phys. 213, p. 523, e-print archive: hep-th/9909147.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Boyarsky, A., Marshakov, A., Ruchayskiy, O., Wiegmann, P., and Zabrodin, A. (2001) Phys. Lett. B515, pp. 483–492, e-print archive: hep-th/0105260.

    ADS  MathSciNet  Google Scholar 

  8. Witten, E. (1990) Nucl. Phys. B340, p. 281.Dijkgraaf, R., Verlinde, H. and Verlinde, E. (1991) Nucl. Phys. B352 p. 59.

    Article  ADS  MathSciNet  Google Scholar 

  9. Hadamard, J. (1908) Mém. présentés par divers savants à l’Acad. sci., 33.

    Google Scholar 

  10. Etingof, P. and Varchenko, A. (1992) Why does the boundary of a round drop becomes a curve of order four, University Lecture Series 3, Am. Math. Soc., Providence, RI.

    Google Scholar 

  11. Krichever, I. (2000) unpublished.

    Google Scholar 

  12. Takhtajan, L. (2001) Lett. Math. Phys. 56, pp. 181–228, e-print archive: math. QA/0102164.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kostov, I. K., Krichever, I. M., Mineev-Weinstein, M., Wiegmann, P. B., and Zabrodin, A. (2001) Ï„ -function for analytic curves, in: Random Matrices and Their Applications, MSRI publications, Vol. 40, Cambridge Academic Press, Cambridge, e-print archive: hep-th/0005259.

    Google Scholar 

  14. Hille, E. (1962) Analytic function theory, Vol. II, Ginn and Company.

    Google Scholar 

  15. Gibbons, J. and Kodama, Y. (1994) Singular Limits of DispersiveWaves, Proceedings of NATO ASI ed. N. Ercolani, London—New York, Plenum; Carroll, R. and Kodama, Y. J. (1995) J. Phys. A: Math. Gen. A28, p. 6373.

    Google Scholar 

  16. Takasaki, K. and Takebe, T. (1995) Rev. Math. Phys. 7, pp. 743–808.

    Article  MATH  MathSciNet  Google Scholar 

  17. Krichever, I., Marshakov, A., and Zabrodin, A. Integrable Structure of the Dirichlet Boundary Problem in Multiply-Connected Domains, preprint MPIM-2003–42, ITEP/TH-24/03, FIAN/TD-09/03.

    Google Scholar 

  18. Gustafsson, B. (1983) Acta Appl. Math. 1, pp. 209–240.

    Article  MATH  MathSciNet  Google Scholar 

  19. Aharonov, D. and Shapiro, H. (1976) J. Anal. Math. 30, pp. 39–73

    Article  MATH  MathSciNet  Google Scholar 

  20. Kazakov, V. and Marshakov, A. (2003) J. Phys. A: Math. Gen. 36, pp. 3107–3136, e-print archive: hep-th/0211236.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Fay, J. D. (1973) Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics 352, Springer-Verlag, New York.

    Google Scholar 

  22. Marshakov, A., Mironov, A., and Morozov, A. (1996) Phys. Lett. B389, pp. 43–52, e-print archive: hep-th/9607109.

    ADS  MathSciNet  Google Scholar 

  23. Braden, H. and Marshakov, A. (2002) Phys. Lett. B541, pp. 376–383, e-print archive: hep-th/0205308.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Marshakov, A., Zabrodin, A. (2006). ON THE DIRICHLET BOUNDARY PROBLEM AND HIROTA EQUATIONS. In: Faddeev, L., Van Moerbeke, P., Lambert, F. (eds) Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete. NATO Science Series, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3503-6_16

Download citation

Publish with us

Policies and ethics