Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 201))

  • 596 Accesses

Abstract

Polynomials in differentiation operators are considered. Joint covariance with respect to Darboux transformations of a pair of such polynomials (Lax pair) as a function of one-field is studied. Methodically, the transforms of the coefficients are equalized to Frechèt differential (first term of the Taylor series on prolonged space) to establish the operator forms. In the commutative (Abelian) case, as it was recently proved for the KP-KdV Lax operators, it results in binary Bell (Faa de Bruno) differential polynomials having natural bilinear (Hirota) representation. Now next example of generalized Boussinesq equation with variable coefficients is studied, the dressing chain equations for the pair are derived. For a pair of generalized Zakharov–Shabat problems a set of integrable (non-commutative) potentials and hence nonlinear equations are constructed altogether with explicit dressing formulas. Some non-Abelian special functions are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matveev, V. B. (1979) Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters, Lett. Math. Phys. 3 pp. 213–216, Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations, pp. 217–222, Some comments on the rational solutions of the Zakharov-Schabat equations, pp. 503–512.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bruno, F. D. (1857) Notes sur une nouvelle formule de calcul différentiel Q.J., Pure Appl. Math. 1, pp. 359–360.

    Google Scholar 

  3. Zaitsev, A. A. and Leble, S. B. (2000) Division of differential operators, intertwine relations and Darboux transformations, Preprint 12.01.1999 math-ph/9903005, ROMP, 46, p. 155.

    Google Scholar 

  4. Salle, M. (1982) Darboux transformations for nonabelian and nonlocal Toda-chaintype equations, Theor. Math. Phys. 53, pp. 227–237.

    Google Scholar 

  5. Leble, S. and Salle, M. (1985) The Darboux transformations for the discrete analogue of the Silin-Tikhonchuk equation, Dokl. AN SSSR 284, pp. 110–114.

    Google Scholar 

  6. Matveev, V. B. and Salle, M. A. (1991) Darboux Transformations and Solitons, Springer, Berlin.

    MATH  Google Scholar 

  7. Roger, C. and Schiff, W. K. (2002) Backlund and Darboux Transformations, Cambridge University Press.

    Google Scholar 

  8. Matveev, V. B. (2000) Darboux transformations, covariance theorems and integrable systems, Amer. Math. Soc. Transl. 201(2), pp. 179–209.

    Google Scholar 

  9. Leble S. (1991) Darboux transforms algebras in 2+1 dimensions, in: Proceedings of NEEDS-91 Workshop, World Scientific. Singapore, pp. 53–61.

    Google Scholar 

  10. Leble, S. (2001) Covariance of lax pairs and integrability of compatibility condition, nlin.SI/0101028, Theor. Math. Phys., 128, pp. 890–905.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Lambert, F., Leble, S., and Springael, J. (2001) Binary Bell polynomials and Darboux covariant lax, pairs, Glasgow Math. J. 43A, pp. 55–63.

    MathSciNet  Google Scholar 

  12. Lambert, F., Loris, I., and Springael, J. (2001) Classical Darboux transformations and the KP hierarchy, Inverse Problems 17, pp. 1067–1074.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Gilson, C., Lambert, F., Nimmo, J., and Willox, R. (1996) Proc. R. Soc. Land A 452, pp. 223–234.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Mikhailov, A. and Sokolov, V. (2000) Integrable ordinary differential equations on free associative algebras, Theor. Math. Phys. 122, pp. 72–83.

    Article  MathSciNet  Google Scholar 

  15. Ustinov, N., Leble, S., Czachor, M., and Kuna, M. (2001) ‘Darboux-integration of i ρt = [H, f ( ρ)]’ quant-ph/0005030, Phys. Lett. A. 279, pp. 333–340.

    Google Scholar 

  16. Czachor, M., Leble, S., Kuna, M., and Naudts, J. (2000) Nonlinear von Neumann type equations, Trends in Quantum Mechanics Proceedings of the International symposium, ed. H.-D. Doebner et al World Sci, pp. 209–226.

    Google Scholar 

  17. Minic, A. (2002) “Nambu-type quantum mechanics: a nonlinear generalization of geometric QM.” Phys. Lett. B 536, 305–314. hep-th/0202173

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Leble, S. B. and Czachor, M. (1998) Darboux-integrable nonlinear Liouville-von Neumann equation quant-ph/9804052, Phys. Rev. E. 58, p. N6.

    Article  MathSciNet  Google Scholar 

  19. Manakov, S. V. (1976) A remark on the integration of the Eulerian equations of the dynamics of an n-dimensional rigid body (Russian). Funktsional’nyi Analiz i Pril. 10, pp. 93–94. Adler, M. and van Moerbeke, P. (1980) Completely integrable systems, Euclidean Lie algebras, and curves, Adv. in Math. 38, pp. 267–357.

    MATH  MathSciNet  Google Scholar 

  20. Czachor, M. and Ustinov, N. (2000) New class of integrable nonlinear von Neumann-type equations, arXiv:nlinSI/0011013, J. Math. Phys. (in press).

    Google Scholar 

  21. Olver, P. G. (1986) Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107, Springer, Berlin.

    Google Scholar 

  22. Weiss, J. (1986) Periodic fixed points of Bäcklund transformations and the Korteweg-de Vries equation, J. Math. Phys. 27, pp. 2647–2656.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Schimming, R. and Rida, S. Z. (1996) Noncommutative Bell polynomials, Int. J. of Algebra and Computation 6, pp. 635–644.

    Article  MATH  MathSciNet  Google Scholar 

  24. Kuna, M., Czachor, M., and Leble, S. (1999) Nonlinear von Noeumann equations: Darboux invariance and spectra, Phys. Lett. A. 255, pp. 42–48.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Leble, S. (2006). COVARIANT FORMS OF LAX ONE-FIELD OPERATORS: FROM ABELIAN TO NONCOMMUTATIVE. In: Faddeev, L., Van Moerbeke, P., Lambert, F. (eds) Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete. NATO Science Series, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3503-6_15

Download citation

Publish with us

Policies and ethics