Skip to main content

Abstract

Major computational advances in predicting the electronic and structural properties of matter come from two sources: improved performance of hardware and the creation of new algorithms, i.e., software. Improved hardware follows technical advances in computer design and electronic components. Such advances are frequently characterized by Moore’s Law, which states that computer power will double every 2 years or so. This law has held true for the past 20 or 30 years and most workers expect it to hold for the next decade, suggesting that such technical advances can be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.L. Beck, “Real-space mesh techniques in density functional theory,” Rev. Mod. Phys., 74, 1041, 2000.

    Article  ADS  Google Scholar 

  2. J.R. Chelikowsky, “The pseudopotential-density functional method applied to nanostructures,” J. Phys. D: Appl. Phys., 33, R33, 2000.

    Article  ADS  Google Scholar 

  3. C.L. Bris (ed.), Handbook of Numerical Analysis (Devoted to Computational Chemistry), Volume X, Elsevier, Amsterdam, 2003.

    Google Scholar 

  4. S. Lundqvist and N.H. March (eds.), Theory of the Inhomogeneous Electron Gas, Plenum, New York, 1983.

    Google Scholar 

  5. W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., 140, A1133, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  6. W. Pickett, “Pseudopotential methods in condensed matter applications,” Comput. Phys. Rep., 9, 115, 1989.

    Article  ADS  Google Scholar 

  7. J.R. Chelikowsky and M.L. Cohen, “Ab initio pseudopotentials for semiconductors,” In: T.S. Moss and P.T. Landsberg (eds.), Handbook of Semiconductors, 2nd edn., Elsevier, Amsterdam, 1992.

    Google Scholar 

  8. N. Troullier and J.L. Martins, “Efficient pseudopotentials for plane-wave calculations,” Phys. Rev. B, 43, 1993, 1991.

    Article  ADS  Google Scholar 

  9. J.R. Chelikowsky and S.G. Louie, “First principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: application to diamond,” Phys. Rev. B, 29, 3470, 1984.

    Article  ADS  Google Scholar 

  10. J.R. Chelikowsky and S.G. Louie (eds.), Quantum Theory of Materials, Kluwer, Dordrecht, 1996.

    Google Scholar 

  11. P. Pulay, “Ab initio calculation of force constants and equilibrium geometries,” Mol. Phys., 17, 197, 1969.

    Article  ADS  Google Scholar 

  12. B. Fornberg and D.M. Sloan, “A review of pseudospectral methods for solving partial differential equations,” Acta Numerica, 94, 203, 1994.

    Article  MathSciNet  Google Scholar 

  13. L. Kleinman and D.M. Bylander, “Efficacious form for model pseudopotential,” Phys. Rev. Lett., 48, 1425, 1982.

    Article  ADS  Google Scholar 

  14. J.R. Chelikowsky, N. Troullier, and Y. Saad, “The finite-difference-pseudopotential method: electronic structure calculations without a basis,” Phys. Rev. Lett., 72, 1240, 1994.

    Article  ADS  Google Scholar 

  15. J. Bernholc, “Computational materials science: the era of applied quantum mechanics,” Phys. Today, 52, 30, 1999.

    Article  Google Scholar 

  16. A. Nakano, M.E. Bachlechner, R.K. Kalia, E. Lidorkis, P. Vashishta, G.Z. Voyladjis, T.J. Campbell, S. Ogata, and R Shimojo, “Multiscale simulation of nanosystems,” Comput. Sci. Eng., 3, 56, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Chelikowsky, J.R. (2005). Electronic Scale. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_8

Download citation

Publish with us

Policies and ethics