Skip to main content

Electronic Structure Methods: Augmented Waves, Pseudopotentials and The Projector Augmented Wave Method

  • Chapter
Book cover Handbook of Materials Modeling

Abstract

The main goal of electronic structure methods is to solve the Schrödinger equation for the electrons in a molecule or solid, to evaluate the resulting total energies, forces, response functions and other quantities of interest. In this paper we describe the basic ideas behind the main electronic structure methods such as the pseudopotential and the augmented wave methods and provide selected pointers to contributions that are relevant for a beginner. We give particular emphasis to the projector augmented wave (PAW) method developed by one of us, an electronic structure method for ab initio molecular dynamics with full wavefunctions. We feel that it allows best to show the common conceptional basis of the most widespread electronic structure methods in materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, B864, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., 140, A1133, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  3. R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.

    Google Scholar 

  4. P.E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953, 1994.

    Article  ADS  Google Scholar 

  5. J.C. Slater, “Wave functions in a periodic potential,” Phys. Rev., 51, 846, 1937.

    Article  MATH  ADS  Google Scholar 

  6. J. Korringa, “On the calculation of the energy of a Bloch wave in a metal,” Physica (Utrecht), 13, 392, 1947.

    Article  MathSciNet  ADS  Google Scholar 

  7. W. Kohn and J. Rostocker, “Solution of the schrödinger equation in periodic lattices with an application to metallic lithium,” Phys. Rev., 94, 1111, 1954.

    Article  MATH  ADS  Google Scholar 

  8. O.K. Andersen, “Linear methods in band theory,” Phys. Rev. B, 12, 3060, 1975.

    Article  ADS  Google Scholar 

  9. H. Krakauer, M. Posternak, and A.J. Freeman, “Linearized augmented plane-wave method for the electronic band structure of thin films,” Phys. Rev. B, 19, 1706, 1979.

    Article  ADS  Google Scholar 

  10. S. Singh, Planewaves, Pseudopotentials and the LAPW method, Kluwer Academic, Dordrecht, 1994.

    Google Scholar 

  11. J.M. Soler and A.R. Williams, “Simple formula for the atomic forces in the augmented-plane-wave method,” Phys. Rev. B, 40, 1560, 1989.

    Article  ADS  Google Scholar 

  12. D. Singh, “Ground-state properties of lanthanum: treatment of extended-core states,” Phys. Rev. B, 43, 6388, 1991.

    Article  ADS  Google Scholar 

  13. E. Sjöstedt, L. Nordström, and DJ. Singh, “An alternative way of linearizing the augmented plane-wave method,” Solid State Commun., 114, 15, 2000.

    Article  ADS  Google Scholar 

  14. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, “Efficient linearization of the augmented plane-wave method,” Phys. Rev. B, 64, 195134, 2001.

    Article  ADS  Google Scholar 

  15. H.L. Skriver, The LMTO Method, Springer, New York, 1984.

    Google Scholar 

  16. O.K. Andersen and O. Jepsen, “Explicit, first-principles tight-binding theory,” Phys. Rev. Lett., 53, 2571, 1984.

    Article  ADS  Google Scholar 

  17. O.K. Andersen, T. Saha-Dasgupta, and S. Ezhof, “Third-generation muffin-tin orbitals,” Bull. Mater. Sci., 26, 19, 2003.

    Article  Google Scholar 

  18. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, T. Pruschke, V.I. Anisimov, and D. Vollhardt, “The LDA+DMFT approach to materials with strong electronic correlations,” In: J. Grotendorst, D. Marx, and A. Muramatsu (eds.) Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, vol. 10 NIC Series. John von Neumann Institute for Computing, Jülich, p. 175, 2002.

    Google Scholar 

  19. C. Herring, “A new method for calculating wave functions in crystals,” Phys. Rev., 57, 1169, 1940.

    Article  MATH  ADS  Google Scholar 

  20. J.C. Phillips and L. Kleinman, “New method for calculating wave functions in crystals and molecules,” Phys. Rev, 116, 287, 1959.

    Article  MATH  ADS  Google Scholar 

  21. E. Antoncik, “Approximate formulation of the orthogonalized plane-wave method,” J. Phys. Chem. Solids, 10, 314, 1959.

    Article  ADS  Google Scholar 

  22. D.R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,” Phys. Rev. Lett., 43, 1494, 1979.

    Article  ADS  Google Scholar 

  23. A. Zunger and M. Cohen, “First-principles nonlocal-pseudopotential approach in the density-functional formalism: development and application to atoms,” Phys. Rev. B, 18, 5449, 1978.

    Article  ADS  Google Scholar 

  24. G.P. Kerker, “Non-singular atomic pseudopotentials for solid state applications,” J. Phys. C, 13, L189, 1980.

    Article  ADS  Google Scholar 

  25. G.B. Bachelet, D.R. Hamann, and M. Schlüter, “Pseudopotentials that work: from H to Pu,” Phys. Rev. B, 26, 4199, 1982.

    Article  ADS  Google Scholar 

  26. N. Troullier and J.L. Martins, “Efficient pseudopotentials for plane-wave calculations,” Phys. Rev. B, 43, 1993, 1991.

    Article  ADS  Google Scholar 

  27. J.S. Lin, A. Qteish, M.C. Payne, and V. Heine, “Optimized and transferable nonlocal separable ab initio pseudopotentials,” Phys. Rev. B, 47, 4174, 1993.

    Article  ADS  Google Scholar 

  28. M. Fuchs and M. Scheffler, “Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory,” Comput. Phys. Commun., 119, 67, 1999.

    Article  MATH  ADS  Google Scholar 

  29. L. Kleinman and D.M. Bylander, “Efficacious form for model pseudopotentials,” Phys. Rev. Lett., 48, 1425, 1982.

    Article  ADS  Google Scholar 

  30. P.E. Blöchl, “Generalized separable potentials for electronic structure calculations,” Phys. Rev. B, 41, 5414, 1990.

    Article  ADS  Google Scholar 

  31. D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, 41, 17892, 1990.

    Article  ADS  Google Scholar 

  32. S.G. Louie, S. Froyen, and M.L. Cohen, “Nonlinear ionic pseudopotentials in spindensity-functional calculations,” Phys. Rev. B, 26, 1738, 1982.

    Article  ADS  Google Scholar 

  33. D.R. Hamann, “Generalized norm-conserving pseudopotentials,” Phys. Rev. B, 40, 2980, 1989.

    Article  ADS  Google Scholar 

  34. K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, “Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics,” Phys. Rev. B, 47, 110142, 1993.

    Article  Google Scholar 

  35. X. Gonze, R. Stumpf, and M. Scheffler, “Analysis of separable potentials,” Phys. Rev. B, 44, 8503, 1991.

    Article  ADS  Google Scholar 

  36. C.G. Van de Walle and P.E. Blöchl, “First-principles calculations of hyperfine parameters,” Phys. Rev. B, 47, 4244, 1993.

    Article  ADS  Google Scholar 

  37. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate-gradients,” Rev. Mod. Phys., 64, 11045, 1992.

    Article  ADS  Google Scholar 

  38. R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett., 55, 2471, 1985.

    Article  ADS  Google Scholar 

  39. S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” Mol. Phys., 52, 255, 1984.

    Article  ADS  Google Scholar 

  40. Hoover, “Canonical dynamics: equilibrium phase-space distributions,” Phys. Rev. A, 31, 1695, 1985.

    Google Scholar 

  41. P.E. Blöchl and M. Parrinello, “Adiabaticity in first-principles molecular dynamics,” Phys. Rev. B, 45, 9413, 1992.

    Article  ADS  Google Scholar 

  42. P.E. Blöchl, “Second generation wave function thermostat for ab initio molecular dynamics,” Phys. Rev. B, 65, 1104303, 2002.

    Article  Google Scholar 

  43. S.C. Watson and E.A. Carter, “Spin-dependent pseudopotentials,” Phys. Rev. B, 58, R13309, 1998.

    Article  ADS  Google Scholar 

  44. G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, 59, 1758, 1999.

    Article  ADS  Google Scholar 

  45. N.A.W. Holzwarth, G.E. Mathews, R.B. Dunning, A.R. Tackett, and Y. Zheng, “Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids,” Phys. Rev. B, 55, 2005, 1997.

    Article  ADS  Google Scholar 

  46. A.R. Tackett, N.A.W. Holzwarth, and G.E. Matthews, “A projector augmented wave (PAW) code for electronic structure calculations. Part I: atompaw for generating atom-centered functions. A projector augmented wave (PAW) code for electronic structure calculations. Part II: pwpaw for periodic solids in a plane wave basis,” Comput. Phys. Commun., 135, 329–347, 2001. See also pp. 348–376.

    Article  MATH  ADS  Google Scholar 

  47. M. Valiev and J.H. Weare, “The projector-augmented plane wave method applied to molecular bonding,” J. Phys. Chem. A, 103, 10588, 1999.

    Article  Google Scholar 

  48. P.E. Blöchl, “Electrostatic decoupling of periodic images of plane-wave-expanded densities and derived atomic point charges,” J. Chem. Phys., 103, 7422, 1995.

    Article  ADS  Google Scholar 

  49. T.K. Woo, P.M. Margl, P.E. Blöchl, and T. Ziegler, “A combined Car-Parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis,” J. Phys. Chem. B, 101, 7877, 1997.

    Article  Google Scholar 

  50. O. Bengone, M. Alouani, P.E. Blöchl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B, 62, 16392, 2000.

    Article  ADS  Google Scholar 

  51. B. Arnaud and M. Alouani, “All-electron projector-augmented-wave GW approximation: application to the electronic properties of semiconductors,” Phys. Rev. B., 62, 4464, 2000.

    Article  ADS  Google Scholar 

  52. D. Hobbs, G. Kresse, and J. Hafner, “Fully unconstrained noncollinear magnetism within the projector augmented-wave method,” Phys. Rev. B, 62, 11556, 2000.

    Article  ADS  Google Scholar 

  53. H.M. Petrilli, P.E. Blöchl, P. Blaha, and K. Schwarz, “Electric-field-gradient calculations using the projector augmented wave method,” Phys. Rev. B, 57, 14690, 1998.

    Article  ADS  Google Scholar 

  54. P.E. Blöchl, “First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen,” Phys. Rev. B, 62, 6158, 2000.

    Article  ADS  Google Scholar 

  55. C.J. Pickard and F. Mauri, “All-electron magnetic response with pseudopotentials: NMR chemical shifts,” Phys. Rev. B., 63, 245101, 2001.

    Article  ADS  Google Scholar 

  56. F. Mauri, B.G. Pfrommer, and S.G. Louie, “Ab initio theory of NMR chemical shifts in solids and liquids,” Phys. Rev. Lett., 77, 5300, 1996.

    Article  ADS  Google Scholar 

  57. D.N. Jayawardane, CJ. Pickard, L.M. Brown, and M.C. Payne, “Cubic boron nitride: experimental and theoretical energy-loss near-edge structure,” Phys. Rev. B, 64, 115107, 2001.

    Article  ADS  Google Scholar 

  58. H. Kageshima and K. Shiraishi, “Momentum-matrix-element calculation using pseudopotentials,” Phys. Rev. B, 56, 14985, 1997.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Blöchl, P.E., Kästner, J., Först, C.J. (2005). Electronic Structure Methods: Augmented Waves, Pseudopotentials and The Projector Augmented Wave Method. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_7

Download citation

Publish with us

Policies and ethics