Skip to main content

Multimillion Atom Molecular-Dynamics Simulations of Nanostructured Materials and Processes on Parallel Computers

  • Chapter

Abstract

Materials by design efforts have thus far focused on controlling structures at diverse length scales — atoms, defects, fibers, interfaces, grains, pores, etc. Because of the inherent complexity of such multiscale materials phenomena, atomistic simulations are expected to play an important role in the design of materials such as metals, semiconductors, ceramics, and glasses [1]. In recent years, we have witnessed rapid progress in large-scale atomistic simulations, highly efficient algorithms for massively parallel machines, and immersive and interactive virtual environments for analyzing and controlling simulations in real time. As a result of these advances, simulation efforts are being directed toward reliably predicting properties of materials in advance of fabrication. Thus, materials simulations are capable of complementing and guiding experimental search for new and novel materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Pechenik, R.K. Kalia, and P. Vashishta, Computer-Aided Design of High-Temperature Materials., Oxford University Press, Oxford, UK, 1999.

    Google Scholar 

  2. A. Nakano, M.E. Bachlechner, R.K. Kalia, E. Lidorikis, P. Vashishta, G.Z. Voyiadjis, T.J. Campbell, S. Ogata, and R Shimojo, “Multiscale simulation of nanosystems,” Comput. Sci. Engrg., 3(4), 56–66, 2001.

    Article  Google Scholar 

  3. F.F. Abraham, R. Walkup, H.J. Gao, M. Duchaineau, T.D. De la Rubia, and M. Seager, “Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Brittle fracture,” Proc. Nat. Acad. Sci. USA., 99, 5777–5782, 2002.

    Article  ADS  Google Scholar 

  4. T.C. Germann and P.S. Lomdahl, “Recent advances in large-scale atomistic materials simulations,” IEEE Comput. Sci. Eng., 1(2), 10, 1999.

    Google Scholar 

  5. A. Nakano, R.K. Kalia, P. Vashishta, T.J. Campbell, S. Ogata, R Shimojo, and S. Saini, “Scalable atomistic simulation algorithms for materials research,” Sci. Progr., 10, 263, 2002.

    Google Scholar 

  6. A. Sharma, A. Nakano, R.K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W. Zhao, X.L. Liu, T.J. Campbell, and A. Haas, “Immersive and interactive exploration of billion-atom systems,” Presence-Teleoper. Vir. Environ., 12, 85–95, 2003.

    Article  Google Scholar 

  7. P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjo, “Interaction potential for SiO2 — a molecular-dynamics study of structural correlations,” Phys. Rev. B, 41, 12197–12209, 1990.

    Article  ADS  Google Scholar 

  8. T. Campbell, R.K. Kalia, A. Nakano, R Shimojo, K. Tsuruta, P. Vashishta, and S. Ogata, “Structural correlations and mechanical behavior in nanophase silica glasses,” Phys. Rev. Lett., 82, 4018–4021, 1999.

    Article  ADS  Google Scholar 

  9. P. Vashishta, R.K. Kalia, and I. Ebbsjo, “Low-energy floppy modes in high-temperature ceramics,” Phys. Rev. Lett., 75, 858–861, 1995.

    Article  ADS  Google Scholar 

  10. A. Nakano, R.K. Kalia, and P. Vashishta, “Dynamics and morphology of brittle cracks — a molecular-dynamics study of silicon-nitride,” Phys. Rev. Lett., 75, 3138–3141, 1995.

    Article  ADS  Google Scholar 

  11. P. Walsh, R.K. Kalia, A. Nakano, P. Vashishta, and S. Saini, “Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular dynamics study,” Appl. Phys. Lett., 77, 4332–4334, 2000.

    Article  ADS  Google Scholar 

  12. P. Walsh, W. Li, R.K. Kalia, A. Nakano, P. Vashishta, and S. Saini, “Structural trans-formation, amorphization, and fracture in nanowires: a multimillion-atom molecular dynamics study,” Appl. Phys. Lett., 78, 3328–3330, 2001.

    Article  ADS  Google Scholar 

  13. A. Chatterjee, R.K. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta, P. Vashishta, C. K. Loong, M. Winterer, and S. Klein, “Sintering, structure, and mechanical prop-erties of nanophase SiC: a molecular-dynamics and neutron scattering study,” Appl. Phys. Lett., 77, 1132–1134, 2000.

    Article  ADS  Google Scholar 

  14. R Shimojo, I. Ebbsjo, R.K. Kalia, A. Nakano, J.P. Rino, and P. Vashishta, “Molecular dynamics simulation of structural transformation in silicon carbide under pressure,” Phys. Rev. Lett., 84, 3338–3341, 2000.

    Article  ADS  Google Scholar 

  15. I. Szlufarska, R.K. Kalia, A. Nakano, and P. Vashishta, “Nanoindentation-induced amorphization in silicon carbide,” Appl. Phys. Lett., 85, 378–380, 2004.

    Article  ADS  Google Scholar 

  16. J.P. Rino, I. Ebbsjo, P.S. Branicio, R.K. Kalia, A. Nakano, and P. Vashishta, “Short-and intermediate-range structural correlations in amorphous silicon carbide (a-SiC): a molecular dynamics study,” Phys. Rev. B, 70, 045207, 2004.

    Article  ADS  Google Scholar 

  17. X.T. Su, R.K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, “Critical lateral size for stress domain formation in InAs/GaAs square nanomesas: a multimillion-atom molecular dynamics study,” Appl. Phys. Lett., 79, 4577–4579, 2001.

    Article  ADS  Google Scholar 

  18. X.T. Su, R.K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, “Million-atom molec-ular dynamics simulation of flat InAs overlayers with self-limiting thickness on GaAs square nanomesas,” Appl. Phys. Lett., 78, 3717–3719, 2001.

    Article  ADS  Google Scholar 

  19. P.S. Branicio, R.K. Kalia, A. Nakano, J.P. Rino, R Shimojo, and P. Vashishta, “Structural, mechanical, and vibrational properties of Gal-xInxAs alloys: a molecular dynamics study,” Appl. Phys. Lett., 82, 1057–1059, 2003.

    Article  ADS  Google Scholar 

  20. P.S. Branicio, J.P. Rino, R Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta, “Molec-ular dynamics study of structural, mechanical, and vibrational properties of crystalline and amorphous Gal-xInxAs alloys,” J. Appl. Phys., 94, 3840–3848, 2003.

    Article  ADS  Google Scholar 

  21. A. Nakano, M.E. Bachlechner, P. Branicio, T. J. Campbell, I. Ebbsjo, R.K. Kalia, A. Madhukar, S. Ogata, A. Omeltchenko, J.P. Rino, R Shimojo, P. Walsh, and P. Vashishta, “Large-scale atomistic modeling of nanoelectronic structures,” IEEE T. Electron Dev., 47, 1804–1810, 2000.

    Article  ADS  Google Scholar 

  22. A. Nakano, R.K. Kalia, and P. Vashishta, “First sharp diffraction peak and intermediate-range order in amorphous silica — finite-size effects in molecular-dynamics simulations,” J. Non-Crystall. Sol., 171, 157–163, 1994.

    Article  ADS  Google Scholar 

  23. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys., 73, 325, 1987.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. A. Nakano, R.K. Kalia, and P. Vashishta, “Multiresolution molecular-dynamics algo-rithm for realistic materials modeling on parallel computers,” Comput. Phys. Commun., 83, 197–214, 1994.

    Article  ADS  Google Scholar 

  25. S. Ogata, T.J. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, and S. Vemparala, “Scalable and portable implementation of the fast multipole method on parallel com-puters,” Comput. Phys. Commun., 153, 445–461, 2003.

    Article  ADS  Google Scholar 

  26. T. Darden, D. York, and L. Pederson, “Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems,” J. Chem. Phys., 98, 10089, 1993.

    Article  ADS  Google Scholar 

  27. G.J. Martyna, M.E. Tuckerman, D.J. Tobias, and M.L. Klein, “Explicit reversible integrators for extended systems dynamics,” J. Chem. Phys., 101, 4177, 1994.

    Article  ADS  Google Scholar 

  28. A. Nakano, “Fuzzy clustering approach to hierarchical molecular-dynamics simula-tion of multiscale materials phenomena,” Comput. Phys. Commun., 105, 139, 1997.

    Article  ADS  Google Scholar 

  29. A. Nakano and T.J. Campbell, “An adaptive curvilinear-coordinate approach to dynamic load balancing of parallel multiresolution molecular dynamics,” Parallel Comput., 23, 1461, 1997.

    Article  MATH  Google Scholar 

  30. A. Nakano, “Multiresolution load balancing in curved space: the wavelet representa-tion,” Concurrency: Prac. Exper, 11, 343, 1999.

    Article  MATH  Google Scholar 

  31. A.K. Rappe and W.A. Goddard, “Charge equilibration for molecular-dynamics sim-ulations,” J. Phys. Chem., 95, 3358–3363, 1991.

    Article  Google Scholar 

  32. F.H. Streitz and J.W. Mintmire, “Electrostatic potentials for metal-oxide surfaces and interfaces,” Phys. Rev. B, 50, 11996, 1994.

    Article  ADS  Google Scholar 

  33. A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, “ReaxFF: a reactive force field for hydrocarbons,” J. Phys. Chem. A, 105, 9396–9409, 2001.

    Article  Google Scholar 

  34. A. Nakano, “Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics,” Comput. Phys. Commun., 104, 59, 1997.

    Article  ADS  Google Scholar 

  35. T. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, “Dynam-ics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers,” Phys. Rev. Lett., 82, 4866–4869, 1999.

    Article  ADS  Google Scholar 

  36. J.Q. Broughton, F.F. Abraham, N. Bernstein, and E. Kaxiras, “Concurrent coupling of length scales: methodology and application,” Phys. Rev. B, 60, 2391–2403, 1999.

    Article  ADS  Google Scholar 

  37. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R.K. Kalia, “Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to mate-rials simulations on parallel computers,” Comput. Phys. Commun., 138, 143–154, 2001.

    Article  MATH  ADS  Google Scholar 

  38. E. Lidorikis, M.E. Bachlechner, R.K. Kalia, A. Nakano, P. Vashishta, and G.Z. Voyiadjis, “Coupling length scales for multiscale atomistics-continuum simulations: atomistically induced stress distributions in Si/Si3N4 nanopixels,” Phys. Rev. Lett., 87, 086104, 2001.

    Article  ADS  Google Scholar 

  39. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, 864, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  40. W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correla-tion effects,” Phys. Rev., 140, 1133, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  41. W. Kohn and P. Vashishta, “General density functional theory,” In: N.H. March and S. Lundquist (eds.), Inhomogeneous Electron Gas, Plenum, 79, 1983.

    Google Scholar 

  42. N. Troullier and J.L. Martins, “Efficient pseudopotentials for plane-wave calculati-ons. 2. Operators for fast iterative diagonalization,” Phys. Rev. B, 43, 8861–8869, 1991.

    Article  ADS  Google Scholar 

  43. S. Ogata, R Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta, “Environmen-tal effects of H2O on fracture initiation in silicon: a hybrid electronic-density-functional/molecular-dynamics study,” J. Appl. Phys., 95, 5316–5323, 2004.

    Article  ADS  Google Scholar 

  44. J.R. Chelikowsky, Y. Saad, S. Ogiit, I. Vasiliev, and A. Stathopoulos, “Electronic structure methods for predicting the properties of materials: grids in space,” Phys. Stat. Sol. (b), 217, 173, 2000.

    Article  ADS  Google Scholar 

  45. S. Ogata, R Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta, “Hybrid quantum mechanical/molecular dynamics simulation on parallel computers: density functional theory on real-space multigrids,” Comput. Phys. Commun., 149, 30–38, 2002.

    Article  ADS  Google Scholar 

  46. F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta, “Linear-scaling density-functional-theory calculations of electronic structure based on real-space grids: de-sign, analysis, and scalability test of parallel algorithms,” Comput. Phys. Commun., 140, 303–314, 2001.

    Article  MATH  ADS  Google Scholar 

  47. J.-L. Fattebert and J. Bernholc, “Towards grid-based O(N) density-functional theory methods: optimized nonorthogonal Orbitals and multigrid acceleration,” Phys. Rev. B, 62, 1713, 2000.

    Article  ADS  Google Scholar 

  48. S. Dapprich, I. Komáromi, K.S. Byun, K. Morokuma, and M.J. Frisch, “A new ONIOM implementation in Gaussian 98. I. The calculation of energies, gradients, vibrational frequencies, and electric field derivatives,” J. Mol. Struct. (Theochem.), 461–462, 1, 1999.

    Google Scholar 

  49. I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastruc-ture., Morgan Kaufmann, San Francisco, 2003.

    Google Scholar 

  50. H. Kikuchi, R.K. Kalia, A. Nakano, P. Vashishta, H. Iyetomi, S. Ogata, T. Kouno, F. Shimojo, K. Tsuruta, and S. Saini, “Collaborative simulation Grid: multiscale quantum-mechanical/classical atomistic simulations on distributed PC clusters in the US and Japan,” Proc. Supercomputing’ 02, IEEE, 2002.

    Google Scholar 

  51. A. Omeltchenko, T.J. Campbell, R.K. Kalia, X.L. Liu, A. Nakano, and P. Vashishta, “Scalable I/O of large-scale molecular dynamics simulations: a data-compression algorithm,” Comput. Phys. Commun., 131, 78–85, 2000.

    Article  MATH  ADS  Google Scholar 

  52. A. Sharma, R.K. Kalia, A. Nakano, and P. Vashishta, “Large multidimensional data visualization for materials science,” Comput. Sci. Engrg., 5(2), 26–33, 2003.

    Article  Google Scholar 

  53. J.P. Rino, I. Ebbsjo, R.K. Kalia, A. Nakano, and P. Vashishta, “Structure of Rings in Vitreous SiO2,” Phys. Rev. B, 47, 3053–3062, 1993.

    Article  ADS  Google Scholar 

  54. D.J. Jacobs and M.F. Thorpe, “Generic rigidity percolation — the pebble game,” Phys. Rev. Lett., 75, 4051–4054, 1995.

    Article  ADS  Google Scholar 

  55. S. Kodiyalam, R.K. Kalia, H. Kikuchi, A. Nakano, F. Shimojo, and P. Vashishta, “Grain boundaries in gallium arsenide nanocrystals under pressure: a parallel molecular-dynamics study,” Phys. Rev. Lett., 86, 55–58, 2001.

    Article  ADS  Google Scholar 

  56. A. Nakano, R.K. Kalia, and P. Vashishta, “Scalable molecular-dynamics, visual-ization, and data-management algorithms for materials simulations,” Comput. Sci. Engrg., 1, 39–47, 1999.

    Article  Google Scholar 

  57. K. Tsuruta, A. Omeltchenko, R.K. Kalia, and P. Vashishta, “Early stages of sintering of silicon nitride nanoclusters: a molecular-dynamics study on parallel machines,” Europhys. Lett., 33, 441–446, 1996.

    Article  ADS  Google Scholar 

  58. H. Gleiter, “Materials with ultrafine microstructures: retrospectives and perspectives,” Nanostruct. Mater, 1, 1, 1992.

    Article  Google Scholar 

  59. R.W. Siegel, “Creating nanophase materials,” Sci. Amer, December, 74, 1996.

    Google Scholar 

  60. R.K. Kalia, A. Nakano, K. Tsuruta, and P. Vashishta, “Morphology of pores and interfaces and mechanical behavior of nanocluster-assembled silicon nitride ceramic,” Phys. Rev. Lett., 78, 689–692, 1997.

    Article  ADS  Google Scholar 

  61. R.K. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta, and P. Vashishta, “Role of ultrafine microstructures in dynamic fracture in nanophase silicon nitride,” Phys. Rev. Lett., 78, 2144–2147, 1997.

    Article  ADS  Google Scholar 

  62. K. Tsuruta, A. Nakano, R.K. Kalia, and P. Vashishta, “Dynamics of consolidation and crack growth in nanocluster-assembled amorphous silicon nitride,” J. Amer. Ceram. Soc., 81, 433–436, 1998.

    Article  Google Scholar 

  63. R.F. Pettifer, R. Dupree, I. Farnan, and U. Sternberg, “NMR determinations of Si-O-Si bond angle distributions in silica,” J. Non-Crystall. Sol., 106, 408–412, 1988.

    Article  ADS  Google Scholar 

  64. E. Celarie, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marliere, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett., 90, 075504, 2003.

    Article  ADS  Google Scholar 

  65. L.V. Brutzel, C.L. Rountree, R.K. Kalia, A. Nakano, and P. Vashishta, MRS Proc, 703, 3.9.1–3.9.6, 2001.

    Google Scholar 

  66. P. Daguier, B. Nghiem, E. Bouchaud, and F. Creuzet, “Pinning and depinning of crack fronts in heterogeneous materials,” Phys. Rev. Lett., 78, 1062–1065, 1997.

    Article  ADS  Google Scholar 

  67. S.M. Hu, “Stress-related problems in silicon technology,” J. Appl. Phys., 70, R53–R80, 1991.

    Article  ADS  Google Scholar 

  68. S.C. Jain, H.E. Maes, K. Pinardi, and I. DeWolf, Appl. Phys. Rev, 79, 8145, 1996.

    Article  ADS  Google Scholar 

  69. F.H. Stillinger and T.A. Weber, “Computer-simulation of local order in condensed phases of silicon,” Phys. Rev. B, 31, 5262–5271, 1985.

    Article  ADS  Google Scholar 

  70. A. Omeltchenko, M.E. Bachlechner, A. Nakano, R.K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar, and P. Messina, “Stress domains in Si(lll)/Si3N4 (0001) nanopixel-10 million-atom molecular dynamics simulations on parallel computers,” Phys. Rev. Lett., 84, 318, 2000.

    Article  ADS  Google Scholar 

  71. M.E. Bachlechner, A. Omeltchenko, A. Nakano, R.K. Kalia, P. Vashishta, I. Ebbsjö, and A. Madhukar, “Dislocation emission at the silicon/silicon nitride interface: a million-atom molecular dynamics simulation on parallel computers,” Phys. Rev. Lett., 84, 322–325, 2000.

    Article  ADS  Google Scholar 

  72. G.L. Zhao and M.E. Bachlechner, “Electronic structure and charge transfer in alpha-and beta-Si3N4 and at the Si (lll)/Si3N4 (001) interface,” Phys. Rev. B, 58, 1887–1895, 1998.

    Article  ADS  Google Scholar 

  73. P. Vashishta, R.K. Kalia, and A. Nakano, “Large-scale atomistic simulations of dynamic fracture,” Comput. Sci. Engrg., 1(5), 56–65, 1999.

    Article  Google Scholar 

  74. X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature, 404, 59–61, 2000.

    Article  ADS  Google Scholar 

  75. R.A. McMillan, C.D. Paavola, J. Howard, S.L. Chan, N.J. Zaluzec, and J.D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater, 1, 247–252, 2002.

    Article  ADS  Google Scholar 

  76. M.C. Schlamp, X.G. Peng, and A.P. Alivisatos, “Improved efficiencies in light emit-ting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” J. Appl. Phys., 82, 5837–5842, 1997.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Vashishta, P., Kalia, R.K., Nakano, A. (2005). Multimillion Atom Molecular-Dynamics Simulations of Nanostructured Materials and Processes on Parallel Computers. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_46

Download citation

Publish with us

Policies and ethics