Skip to main content

Achieving Predictive Simulations with Quantum Mechanical Forces Via the Transfer Hamiltonian: Problems and Prospects

  • Chapter
Handbook of Materials Modeling

Abstract

According to the Westmoreland report [1], β€œin the next ten years, molecularly based modeling will profoundly affect how new chemistry, biology, and materials physics are understood, communicated, and transformed to technology, both intellectually and in commercial applications. It creates new ways of thinking β€” and of achieving.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.R. Westmoreland, P.A. Kollman, A.M. Chaka, P.T. Cummings, K. Morokuma, M. Neurock, E.B. Stechel, and P. Vashishta, β€œApplications of molecular and materials modeling,” NSF, DOE, NIST, DARPA, AFOSR, NIH, 2002.

    Google ScholarΒ 

  2. ACES II is a program product of the Quantum Theory Project, University of Florida. Authors: J.F. Stanton, J. Gauss, J.D. Watts, MNooijen, N. Oliphant, S.A. Perera, P.G. Szalay, W.J. Lauderdale, S.A. Kucharski, S.R. Gwaltney, S. Beck, A. Balkov D.E. Bernholdt, K.K. Baeck, P. Rozyczko, H. Sekino, C. Hober, and R.J. Bartlett. Integral packages included are VMOL (J. Almlf and P.R. Taylor); VPROPS (P.Taylor) ABACUS; (T. Helgaker, H.J. Aa. Jensen, P. Jrgensen, J. Olsen, and P.R. Taylor).

    Google ScholarΒ 

  3. D.T. Griggs and J.D. Blacic, β€œQuartz β€”anomalous weakness of synthetic crystals,” Science, 147, 292, 1965.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  4. G.V. Gibbs, β€œMolecules as models for bonding in silicates,” Am. Mineral, 67, 421, 1982.

    Google ScholarΒ 

  5. A. Post and J. Tullis, β€œThe rate of water penetration in experimentally deformed quartzite, implications for hydrolytic weakening,” Tectonophysics, 295, 117, 1998.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  6. R. Hoffman, β€œAn extended Huckel theory. I. hydrocarbons,” J. Chem. Phys., 39, 1397, 1963.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  7. M. Wolfsberg and L. Helmholtz, β€œThe spectra and electronic structure of the tetrahedral ions MnO4, CrO4, and C1O4,” J. Chem. Phys., 20, 837, 1952.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  8. J.C. Slater and G.F. Koster, β€œSimplified LCAO method for the periodic potential problem,” Phys. Rev., 94, 1167, 1954.

    ArticleΒ  Google ScholarΒ 

  9. W.A. Harrison, β€œCoulomb interactions in semiconductors and insulators,” Phys. Rev. B, 31, 2121, 1985.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  10. O.F. Sankey and DJ. Niklewski, β€œAb initio multicenter tight binding model for molecular dynamics simulations and other applications in covalent systems,” Phys. Rev. B, 40, 3979, 1989.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  11. M. Elstner, D. Porezag, G. Jungnickel, J. Eisner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, β€œSelf-consistent charge density functional tight binding method for simulations of complex materials properties,” Phys. Rev. B, 58, 7260, 1998.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  12. M.W. Finnis, A.T. Paxton, M. Methfessel, and M. van Schilfgaarde, β€œCrystal structures of zirconia from first principles and self-consistent tight binding,” Phys. Rev. Lett., 81, 5149, 1998.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  13. R. Pariser, β€œTheory of the electronic spectra and structure of the polyacenes and of alternant hydrocarbons,” J. Chem. Phys., 24, 250, 1956.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  14. R. Pariser and R.G. Parr, β€œA semi-empirical theory of electronic spectra and electronic structure of complex unsaturated molecules,” J. Chem. Phys., 21, 466, 1953.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  15. M.J.S. Dewar and G. Klopman, β€œGround states of sigma bonded molecules. I. A semi-empirical SCF MO treatment of hydrocarbons,” J. Am. Chem. Soc., 89, 3089, 1967.

    ArticleΒ  Google ScholarΒ 

  16. M.J.S. Dewar, J. Friedheim, G. Grady, E.F. Healy, and J.J.P. Stewart, β€œRevised MNDO parameters for silicon,” Organometallics, 5, 375, 1986.

    ArticleΒ  Google ScholarΒ 

  17. J.A. Pople, D.P. Santry, and G.A. Segal, β€œApproximate self-consistent molecular orbital theory. I. Invariant procedures,” J. Chem. Phys., 43, S129, 1965.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  18. J.A. Pople, D.L. Beveridge, and P.A. Dobosh, β€œApproximate self-consistent molecular orbital theory. 5. Intermediate neglect of differential overlap,” J. Chem. Phys., 47, 2026, 1967.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  19. J.J.P. Stewart, In: K.B. Lipkowitz and D.B. Boyd (eds.), Reviews in Computational Chemistry, VCH Publishers, Weinheins, 1990.

    Google ScholarΒ 

  20. J.J.P. Stewart, β€œComparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation,” J. Mol. Model, 10, 6, 2004.

    ArticleΒ  Google ScholarΒ 

  21. J.J.P. Stewart, β€œOptimization of parameters for semiempirical methods. IV. Extension of MNDO, AM1, and PM3 to more main group elements,” J. Mol. Model, 10, 155, 2004

    ArticleΒ  Google ScholarΒ 

  22. W. Thiel, β€œPerspectives on semiempirical molecular orbital theory,” Adv. Chem. Phys., 93, 703, 1996.

    ArticleΒ  Google ScholarΒ 

  23. K.M. Merz, β€œSemiempirical quantum chemistry: where we are and where we are going,” Abstr. Pap. Am. Chem. Soc., 224, 205, 2002.

    Google ScholarΒ 

  24. M.P. Repasky, J. Chandrasekhar, and W.L. Jorgensen, β€œPDDG/PM3 and PDDG/MNDO: improved semiempirical methods,” J. Comput. Chem., 23, 1601, 2002.

    ArticleΒ  Google ScholarΒ 

  25. I. Tubert-Brohman, C.R.W. Guimaraes, M.P. Repasky, and W.L. Jorgensen, β€œExtension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens,” J. Comput. Chem., 25, 138, 2003.

    ArticleΒ  Google ScholarΒ 

  26. M.R. Frierson and N.L. Allinger, β€œMolecular mechanics (MM2) calculations on siloxanes,” J. Phys. Org. Chem., 2, 573, 1989.

    ArticleΒ  Google ScholarΒ 

  27. I. Rossi and D.G. Truhlar, β€œParameterization of NDDO wavefunctions using genetic algorithms β€”an evolutionary approach to parameterizing potential energy surfaces and direct dynamics for organic reactions,” Chem. Phys. Lett., 233, 231, 1995.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  28. K. Runge, M.G. Cory, and R.J. Bartlett, β€œThe calculation of thermal rate constants for gas phase reactions: the quasi-classical flux-flux autocorrelation function (QCFFAF) approach,” J. Chem. Phys., 114, 5141, 2001.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  29. S. Sekusak, M.G. Cory, R.J. Bartlett, and A. Sabljic, β€œDual-level direct dynamics of the hydroxyl radical reaction with ethane and haloethanes: toward a general reaction parameter method,” J. Phys. Chem. A, 103, 11394, 1999.

    ArticleΒ  Google ScholarΒ 

  30. R.J. Bartlett, β€œCoupled-cluster approach to molecular structure and spectra β€”a step toward predictive quantum chemistry,” J. Phys. Chem., 93, 1697, 1989.

    ArticleΒ  Google ScholarΒ 

  31. T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure Theory, John Wiley and Sons, West Sussex England, 2000.

    Google ScholarΒ 

  32. W. Kohn and L.J. Sham, β€œSelf-consistent equations including exchange and correlation effects,” Phys. Rev., 140, 1133, 1965.

    ArticleΒ  MathSciNetΒ  ADSΒ  Google ScholarΒ 

  33. J.P. Perdew and W. Yue, β€œAccurate and simple density functional for the electronic exchange energy β€”generalized gradient approximation,” Phys. Rev. B, 33, 8800, 1986.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  34. A. Becke, β€œDensity functional thermochemistry 3. The role of exact exchange,” J. Chem. Phys., 98, 5648, 1993.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  35. D.E. Woon and T.H. Dunning, Jr., β€œGaussian basis sets for use in correlated molecular calculations. 4. Calculation of static electrical response properties,” J. Chem. Phys., 100, 2975, 1994.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  36. R.J. Bartlett, β€œCoupled-cluster theory: an overview of recent developments,” In: D. Yarkony (ed.) Modern Electronic Structure, II. World Scientific, Singapore, pp. 1047–1131, 1995.

    ChapterΒ  Google ScholarΒ 

  37. K. Bak, P. Jorgensen, J. Olsen, T. Helgaker, and W. Klopper, β€œAccuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations,” J. Chem. Phys., 112, 9229, 2000.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  38. T. Helgaker, J. Gauss, P. Jorgensen, and J. Olsen, β€œThe prediction of molecular equilibrium structures by the standard electronic wave functions,” J. Chem. Phys., 106, 6430, 1997.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  39. J.Q. Broughton, F.F. Abraham, N. Bernstein, and E. Kaxiras, β€œConcurrent coupling of length scales: methodology and application,” Phys. Rev. B, 60, 2391, 1999.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  40. F. Abraham, J. Broughton, N. Bernstein, and E. Kaxiras, β€œSpanning the length scales in dynamic simulation,” Computers in Phys., 12, 538, 1998.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  41. M. Schutz and H.J. Werner, β€œLocal perturbative triples correction (T) with linear cost scaling,” Chem. Phys. Lett., 318, 370, 2000.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  42. J. Cioslowski, S. Patchkovskii, and W. Thiel, β€œElectronic structures, geometries, and energetics of highly charged cations of the C-60 fullerene,” Chem. Phys. Lett., 248, 116, 1996.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  43. R.J. Bartlett, β€œElectron correlation from molecules to materials,” In: A. Gonis, N. Kioussis, and M. Ciftan (eds.), Electron Correlations and Materials Properties 2, Kluwer/Plenum, Dordrecht, pp. 219–236, 2003.

    Google ScholarΒ 

  44. C.E. Taylor, M.G. Cory, R.J. Bartlett, and W. Thiel, β€œThe transfer Hamiltonian: a tool for large scale simulations with quantum mechanical forces,” Comput. Mater. Sci., 27, 204, 2003.

    ArticleΒ  Google ScholarΒ 

  45. K.A. Brueckner, β€œMany body problem for strongly interacting particles. 2. linked cluster expansion,” Phys. Rev., 100, 36, 1955.

    ArticleΒ  MATHΒ  ADSΒ  Google ScholarΒ 

  46. P.O. Lowdin, β€œStudies in perturbation theory. 5. Some aspects on exact self-consistent field theory,” J. Math. Phys., 3, 1171, 1962.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  47. Q. Zhao, R.C. Morrison, and R.G. Parr, β€œFrom electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange correlation energies,” Phys. Rev. A, 50, 2138, 1994.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  48. M. Brauer, M. Kunert, E. Dinjus, M. Klussmann M. Doring, H. Gorls, and E. Anders, β€œEvaluation of the accuracy of PM3, AM1 and MNDO/d as applied to zinc compounds,” J. Mol. Struct., (Theo. Chem.) 505, 289, 2000.

    ArticleΒ  Google ScholarΒ 

  49. G. Klopman, β€œSemiempirical treatment of molecular structures. 2. Molecular terms + application to diatomic molecules,” J. Am. Chem. Soc., 86, 4550, 1964.

    ArticleΒ  Google ScholarΒ 

  50. K. Ohno, β€œSome remarks on the pariser-parr-pople method,” Theor. Chim. Acta, 2, 219, 1964.

    ArticleΒ  Google ScholarΒ 

  51. M.J.S. Dewar and W. Thiel, β€œA semiempirical model for the two-center repulsion integrals in the NDDO approximation,” Theor. Chim. Acta, 46, 89, 1977.

    ArticleΒ  Google ScholarΒ 

  52. J.F. Stanton and R.J. Bartlett, β€œThe equation of motion coupled-cluster method β€”a systematic biorthogonal approach to molecular excitation energies, transition probabilities and excited state properties,” J. Chem. Phys., 98, 7029, 1993.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  53. P. Charbonneau, β€œGenetic algorithms in astronomy and astrophysics,” Astrophys. J. (Suppl), 101, 309, 1995.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  54. S. Tsuneyuki, H. Aoki, M. Tsukada, and Y. Matsui, β€œFirst-principle interatomic potential of silica applied to molecular dynamics,” Phys. Rev. Lett., 61, 869, 1988.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  55. B.W.H van Beest, G.J. Kramer, and R.A. van Santen, β€œForce fields for silicas and aluminophosphates based on ab initio calculations,” Phys. Rev. Lett., 64, 1955, 1990.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  56. P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjo, β€œInteraction potential for SiO2-a molecular dynamics study of structural correlations,” Phys. Rev. B, 41, 12197, 1990.

    ArticleΒ  ADSΒ  Google ScholarΒ 

  57. T. Zhu, J. Li, S. Yip, R.J. Bartlett, S.B. Trickey and N.H. de Leeuw, β€œDeformation and fracture of a SiO2 nanorod,” Mol. Simul., 29, 671, 2003.

    ArticleΒ  Google ScholarΒ 

  58. M. Schutz and M.R. Manby, β€œLinear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals,” Phys. Chem. β€”Chem. Phys., 5, 3349, 2003.

    Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 2005 Springer

About this chapter

Cite this chapter

Bartlett, R.J., De Taylor, C.E., Korkin, A. (2005). Achieving Predictive Simulations with Quantum Mechanical Forces Via the Transfer Hamiltonian: Problems and Prospects. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_4

Download citation

Publish with us

Policies and ethics