Skip to main content

Accelerated Molecular Dynamics Methods

  • Chapter
Handbook of Materials Modeling

Abstract

Molecular dynamics (MD) simulation, in which atom positions are evolved by integrating the classical equations of motion in time, is now a well established and powerful method in materials research. An appealing feature of MD is that it follows the actual dynamical evolution of the system, making no assumptions beyond those in the interatomic potential, which can, in principle, be made as accurate as desired. However, the limitation in the accessible simulation time represents a substantial obstacle in making useful predictions with MD. Resolving individual atomic vibrations — a necessity for maintaining accuracy in the integration — requires time steps on the order of femtoseconds, so that reaching even one microsecond is very difficult on today’s fastest processors. Because this integration is inherently sequential in nature, direct, spatial parallelization does not help significantly; it just allows simulations of nanoseconds on much larger systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Voter, R Montalenti, and T.C. Germann, “Extending the time scale in atomistic simulation of materials,” Annu. Rev. Mater. Res., 32, 321–346, 2002.

    Article  Google Scholar 

  2. D. Chandler, “Statistical-mechanics of isomerization dynamics in liquids and transition-state approximation,” J. Chem. Phys., 68, 2959–2970, 1978.

    Article  ADS  Google Scholar 

  3. A.F. Voter and J.D. Doll, “Dynamical corrections to transition state theory for mul-tistate systems: surface self-diffusion in the rare-event regime,” J. Chem. Phys., 82, 80–92, 1985.

    Article  ADS  Google Scholar 

  4. C.H. Bennett, “Molecular dynamics and transition state theory: simulation of infre-quent events,” ACS Symp. Ser., 63–97, 1977.

    Google Scholar 

  5. R. Marcelin, “Contribution à l’étude de la cinétique physico-chimique,” Ann. Physique, 3, 120–231, 1915.

    Google Scholar 

  6. E.P. Wigner, “On the penetration of potential barriers in chemical reactions,” Z. Phys. Chemie B, 19, 203, 1932.

    Google Scholar 

  7. H. Eyring, “The activated complex in chemical reactions,” J. Chem. Phys., 3, 107–115, 1935.

    Article  ADS  Google Scholar 

  8. P. Pechukas, “Transition state theory,” Ann. Rev. Phys. Chem., 32, 159–177, 1981.

    Article  ADS  Google Scholar 

  9. D.G. Truhlar, B.C. Garrett, and S.J. Klippenstein, “Current status of transition state theory,” J. Phys. Chem., 100, 12771–12800, 1996.

    Article  Google Scholar 

  10. A.F. Voter and J.D. Doll, “Transition state theory description of surface self-diffusion: comparison with classical trajectory results,” J. Chem. Phys., 80, 5832–5838, 1984.

    Article  ADS  Google Scholar 

  11. B.J. Berne, M. Borkovec, and J.E. Straub, “Classical and modern methods in reaction-rate theory,” J. Phys. Chem., 92, 3711–3725, 1988.

    Article  Google Scholar 

  12. G.H. Vineyard, “Frequency factors and isotope effects in solid state rate processes,” J. Phys. Chem. Solids, 3, 121–127, 1957.

    Article  ADS  Google Scholar 

  13. A.F. Voter, “Parallel-replica method for dynamics of infrequent events,” Phys. Rev. B, 57, 13985–13988, 1998.

    Article  ADS  Google Scholar 

  14. J.P. Valleau and S.G. Whittington, “A guide to Monte Carlo for statistical mechanics: 1. highways,” In: B.J. Berne (ed.), Statistical Mechanics. A. A Modern Theoretical Chemistry, vol. 5, Plenum, New York, pp. 137–168, 1977.

    Google Scholar 

  15. B.J. Berne, G. Ciccotti, and D.F. Coker (eds.), Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore, 1998.

    Google Scholar 

  16. A.F. Voter, “A method for accelerating the molecular dynamics simulation of infre-quent events,” J. Chem. Phys., 106, 4665–4677, 1997.

    Article  ADS  Google Scholar 

  17. M.R. Sørensen and A.F. Voter, “Temperature-accelerated dynamics for simulation of infrequent events,” J. Chem. Phys., 112, 9599–9606, 2000.

    Article  ADS  Google Scholar 

  18. W.F. Egelhoff, Jr. and I. Jacob, “Reflection high-energy electron-diffraction (RHEED) oscillations at 77K,” Phys. Rev. Lett., 62, 921–924, 1989.

    Article  ADS  Google Scholar 

  19. F. Montalenti, M.R. Sørensen, and A.F. Voter, “Closing the gap between experiment and theory: crystal growth by temperature accelerated dynamics,” Phys. Rev. Lett., 87, 126101, 2001.

    Article  ADS  Google Scholar 

  20. J.A. Sprague, F. Montalenti, B.P. Uberuaga, J.D. Kress, and A.F. Voter, “Simulation of growth of Cu on Ag(001) at experimental deposition rates” Phys. Rev. B, 66, 205415, 2002.

    Article  ADS  Google Scholar 

  21. F. Montalenti and A.F. Voter, “Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics method,” J. Chem. Phys., 116, 4819–4828, 2002.

    Article  ADS  Google Scholar 

  22. G. Henkelman and H. Jónsson, “A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives,” J. Chem. Phys., 111, 7010–7022, 1999.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Uberuaga, B.P., Montalenti, F., Germann, T.C., Voter, A.F. (2005). Accelerated Molecular Dynamics Methods. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_32

Download citation

Publish with us

Policies and ethics