Diffusion and Configurational Disorder in Multicomponent Solids

  • A. Van der Ven
  • G. Ceder

Abstract

Atomic diffusion in solids is a kinetic property that affects the rates of important nonequilibrium phenomena in materials. The kinetics of atomic redistribution in response to concentration gradients determine not only the speed, but often also the mechanism by which phase transformations in multi-component solids occur. In electrode materials for batteries and fuel cells high mobilities of specific ions ranging from lithium or sodium to oxygen or hydrogen are essential. In many instances, diffusion occurs in nondilute regimes in which different migrating atoms interact with each other. For example, lithium intercalation compounds such as LixCoO2 and Li[itxC6 which serve as electrodes in lithium-ion batteries, can undergo large variations in lithium concentrations, ranging from very dilute concentrations to complete filling of all interstitial sites available for Li in the host. In nondilute regimes, diffusing atoms interact with each other, both electronically and elastically. A complete theory of nondilute diffusion in multi-component solids needs to account for the dependence of the energy and migration barriers on the configuration of diffusing ions.

Keywords

Migration Anisotropy Lithium Platinum Cobalt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.M. Sanchez, F. Ducastelle, and D. Gratias, Physica A, 128, 334, 1984.CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    D. de Fontaine, In: H. Ehrenreich and D. Turnbull (eds.), Solid State Physics., Academic Press, New York, pp. 33, 1994.Google Scholar
  3. [3]
    A. Van der Ven, G. Ceder, M. Asta, and P.D. Tepesch, Phys. Rev. B, 64, 184307, 2001.CrossRefADSGoogle Scholar
  4. [4]
    S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover Publications, Mineola, NY, 1984.Google Scholar
  5. [5]
    G.H. Vineyard, J. Phys. Chem. Solids, 3, 121, 1957.CrossRefADSGoogle Scholar
  6. [6]
    D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford, 1987.Google Scholar
  7. [7]
    R. Zwanzig, Annu. Rev. Phys. Chem., 16, 67, 1965.CrossRefADSGoogle Scholar
  8. [8]
    R. Zwanzig, J. Chem. Phys., 40, 2527, 1964.CrossRefADSGoogle Scholar
  9. [9]
    Y. Zhou and G.H. Miller, J. Phys. Chem., 100, 5516, 1996.CrossRefGoogle Scholar
  10. [10]
    R. Gomer, Rep. Prog. Phys., 53, 917, 1990.CrossRefADSGoogle Scholar
  11. [11]
    M. Tringides and R. Gomer, Surf. Sci., 145, 121, 1984.CrossRefADSGoogle Scholar
  12. [12]
    C. Uebing and R. Gomer, J. Chem. Phys., 95, 7626, 1991.CrossRefADSGoogle Scholar
  13. [13]
    A.R. Allnatt, J. Chem. Phys., 43, 1855, 1965.CrossRefADSGoogle Scholar
  14. [14]
    A.R. Allnatt, J. Phys. C: Solid State Phys., 15, 5605, 1982.CrossRefADSGoogle Scholar
  15. [15]
    R.E. Howard and A.B. Lidiard, Rep. Prog. Phys., 27, 161, 1964.CrossRefADSGoogle Scholar
  16. [16]
    A.R. Allnatt and A.B. Lidiard, Rep. Prog. Phys., 50, 373, 1987.CrossRefADSGoogle Scholar
  17. [17]
    J.W. Cahn and F.C. Larche, Scripta Met., 17, 927, 1983.CrossRefGoogle Scholar
  18. [18]
    K.W. Kehr, K. Binder, and S.M. Reulein, Phys. Rev. B, 39, 4891, 1989.CrossRefADSGoogle Scholar
  19. [19]
    C. Wolverton, G. Ceder, D. de Fontaine, and H. Dreysse, Phys. Rev. B, 45, 13105, 1992.CrossRefADSGoogle Scholar
  20. [20]
    C. Wolverton and A. Zunger, Phys. Rev. B, 50, 10548, 1994.CrossRefADSGoogle Scholar
  21. [21]
    J.W.D. Connolly and A.R. Williams, Phys. Rev. B, 27, 5169, 1983.CrossRefADSGoogle Scholar
  22. [22]
    J.M. Sanchez, J.P. Stark, and V.L. Moruzzi, Phys. Rev. B, 44, 5411, 1991.CrossRefADSGoogle Scholar
  23. [23]
    Z.W. Lu, S.H. Wei, A. Zunger, S. Frotapessoa, and L.G. Ferreira, Phys. Rev. B, AA, 512, 1991.Google Scholar
  24. [24]
    M. Asta, D. de Fontaine, M. Vanschilfgaarde, M. Sluiter, and M. MethfesSci., Phys. Rev. B, 46, 5055, 1992.CrossRefADSGoogle Scholar
  25. [25]
    M. Asta, R. McCormack, and D. de Fontaine, Phys. Rev. B, 48, 748, 1993.CrossRefADSGoogle Scholar
  26. [26]
    M.H.F. Sluiter, Y. Watanabe, D. de Fontaine, and Y. Kazazoe, Phys. Rev. B, 53, 6136, 1996.CrossRefADSGoogle Scholar
  27. [27]
    P.D. Tepesch, et al., J. Am. Cer. Soc., 79, 2033, 1996.CrossRefGoogle Scholar
  28. [28]
    V. Ozolins, C. Wolverton, and A. Zunger, Phys. Rev. B, 57, 6427, 1998.CrossRefADSGoogle Scholar
  29. [29] A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner, Phys. Rev. B, 58, 2975, 1998.CrossRefADSGoogle Scholar
  30. [30]
    G.D. Garbulsky and G. Ceder, Phys. Rev. B, 51, 67, 1995.CrossRefADSGoogle Scholar
  31. [31]
    G. Mills, H. Jonsson, and G.K. Schenter, Surf. Sci., 324, 305, 1995.CrossRefADSGoogle Scholar
  32. [32]
    A. van de Walle and G. Ceder, J. Phase Eqilib., 23, 348, 2002.CrossRefGoogle Scholar
  33. [33]
    D.B. Laks, L.G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B, 46, 12587, 1992.CrossRefADSGoogle Scholar
  34. [34]
    C. Wolverton, Philos. Mag. Lett., 79, 683, 1999.CrossRefADSGoogle Scholar
  35. [35]
    A. van de Walle and G. Ceder, Rev. Mod. Phys., 74, 11, 2002.CrossRefADSGoogle Scholar
  36. [36]
    R. LeSar, R. Najafabadi, and D.J. Srolovitz, Phys. Rev. Lett., 63, 624, 1989.CrossRefADSGoogle Scholar
  37. [37]
    A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, J. Comput. Phys., 17, 10, 1975.CrossRefADSGoogle Scholar
  38. [38]
    F.M. Bulnes, V.D. Pereyra, and J.L. Riccardo, Phys. Rev. E, 58, 86, 1998.CrossRefADSGoogle Scholar
  39. [39]
    J.N. Reimers and J.R. Dahn, J. Electrochem. Soc., 139, 2091, 1992.CrossRefGoogle Scholar
  40. [40]
    Y. Shao-Horn, S. Levasseur, F. Weill, and C. Delmas, J. Electrochem. Soc., 150, A366, 2003.CrossRefGoogle Scholar
  41. [41]
    A. Van der Ven and G. Ceder, Phys. Rev. B., 2005 (in press).Google Scholar
  42. [42]
    A. Van der Ven and G. Ceder, Phys. Rev. Lett., 2005 (in press).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. Van der Ven
    • 1
  • G. Ceder
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations