Skip to main content

Quasiparticle and Optical Properties of Solids and Nanostructures: The GW-BSE Approach

  • Chapter
Handbook of Materials Modeling

Abstract

We present a review of recent progress in the first-principles study of the spectroscopic properties of solids and nanostructures employing a many-body Green’s function approach based on the GW approximation to the electron self-energy. The approach has been widely used to investigate the excitedstate properties of condensed matter as probed by photoemission, tunneling, optical, and related techniques. In this article, we first give a brief overview of the theoretical foundations of the approach, then present a sample of applications to systems ranging from extended solids to surfaces to nanostructures and discuss some possible ideas for further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Hedin, “New method for calculating the one-particle Green’s function with application to the electron-gas problem,” Phys. Rev., 139, A796, 1965.

    Article  ADS  Google Scholar 

  2. M.S. Hybertsen and S.G. Louie, “First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators,” Phys. Rev. Lett., 55, 1418, 1985.

    Article  ADS  Google Scholar 

  3. M.S. Hybertsen and S.G. Louie, “Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies,” Phys. Rev. B, 34, 5390, 1986.

    Article  ADS  Google Scholar 

  4. W. Kohn, “Nobel lecture: electronic structure of matter-wave functions and density functionals,” Rev. Mod. Phys., 71, 1253, 1999.

    Article  ADS  Google Scholar 

  5. E. Runge and E.K.U. Gross, “Density-functional theory for time-dependent systems,” Phys. Rev. Lett., 52, 997, 1985.

    Article  ADS  Google Scholar 

  6. E.K.U. Gross, J. Dobson, and M. Petersilka, “Density functional theory of timedependent phenomena,” In Density Functional Theory II, R.F. Nalewajski (ed.), Topics in Current Chemistry, vol. 181, Springer, Berlin, p. 81, 1986.

    Google Scholar 

  7. G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density functional versus many-body Green’s-function approaches,” Rev. Mod. Phys., 74, 601, 2002.

    Article  ADS  Google Scholar 

  8. L. Hedin and S. Lundqvist, “Effects of electron-electron and electron-phonon interactions on the one electron states of solids,” In: H. Ehrenreich, F. Seitz, and D. Turnbull (eds.), Solid State Physics, Academic Press, New York, vol. 23, p. 1, 1969.

    Google Scholar 

  9. F. Aryasetiawan and O. Gunnarsson, “GW method,” Rep. Prog. Phys., 61, 3, 1998. [10] M. Rohlfing and S.G. Louie, “Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B, 62, 4927, 2000.

    Article  Google Scholar 

  10. S.G. Louie, “First-principles theory of electron excitation energies in solids, surfaces, and defects,” In: C.Y. Fong (ed.), Topics in Computational Materials Science, World Scientific, Singapore, p. 96, 1997.

    Google Scholar 

  11. W.G. Aulbur, L. Jönsson, and J. Wilkins, “Quasiparticle calculations in solids,” In: Solid State Physics, vol. 54, p. 1, 2000.

    Article  Google Scholar 

  12. A. Marini, G. Onida, and R. Del Sole, “Quasiparticle electronic structure of copper in the GW approximation,” Phys. Rev. Lett., 88, 016403, 2002.

    Article  ADS  Google Scholar 

  13. J.E. Northrup, M.S. Hybertsen, and S.G. Louie, “Many-body calculation of the surface state energies for Si(111)2 x 1,” Phys. Rev. Lett., 66, 500, 1991.

    Article  ADS  Google Scholar 

  14. M. Rohlfing and S.G. Louie, “Optical excitations in conjugated polymers,” Phys. Rev. Lett., 82, 1959, 1999.

    Article  ADS  Google Scholar 

  15. P.M. Echenique, J.M. Pitarke, E. Chulkov, and A. Rubio, “Theory of inelastic lifetimes of low-energy electrons in metals,” Chem. Phys., 251, 1, 2000.

    Article  Google Scholar 

  16. J. Cao, Y. Gao, H.E. Elsayed-Ali, R.D.E. Miller, and D.A. Mantell, “Femtosecond photoemission study of ultrafast dynamics in single-crystal Au(111) films,” Phys. Rev. B, 50, 10948, 1998.

    Article  ADS  Google Scholar 

  17. I. Campillo, J.M. Pitarke, A. Rubio, E. Zarate, and P.M. Echenique, “Inelastic lifetimes of hot electrons in real metals,” Phys. Rev. Lett., 83, 2230, 1999.

    Article  ADS  Google Scholar 

  18. I. Campillo, A. Rubio, J.M. Pitarke, A. Goldman, and P.M. Echenique, “Hole dynamics in noble metals,” Phys. Rev. Lett., 85, 3241, 2000.

    Article  ADS  Google Scholar 

  19. E.K. Chang, M. Rohlfing, and S.G. Louie, “Excitons and optical properties of alphaquartz,” Phys. Rev. Lett., 85, 2613, 2000.

    Article  ADS  Google Scholar 

  20. M. Rohlfing and S.G. Louie, “Excitonic effects and the optical absorption spectrum of hydrogenated Si clusters,” Phys. Rev. Lett., 80, 3320, 1998.

    Article  ADS  Google Scholar 

  21. M. Rohlfing and S.G. Louie, “Electron-hole excitations in semiconductors and insulators,” Phys. Rev. Lett., 81, 2312, 1998.

    Article  ADS  Google Scholar 

  22. L.X. Benedict, E.L. Shirley, and R.B. Bohm, “Optical absorption of insulators and the electron-hole interaction: an ab initio calculation,” Phys. Rev. Lett., 80, 4514, 1998.

    Article  ADS  Google Scholar 

  23. S. Albretch, L. Reining, R. Del Sole, and G. Onida, “Ab initio calculation of excitonic effects in the optical spectra of semiconductors,” Phys. Rev. Lett., 80, 4510, 1998.

    Article  ADS  Google Scholar 

  24. H.R. Philipp, “Optical transitions in crystalline and fused quartz,” Solid State Commun., 4, 73, 1966.

    Article  ADS  Google Scholar 

  25. D.E. Aspnes and A.A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb frp, 1.5 to 6.0 eV” Phys. Rev. B, 27, 985, 1983.

    Article  ADS  Google Scholar 

  26. P. Lautenschlager, M. Garriga, S. Logothetisdis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B, 35, 9174, 1987.

    Article  ADS  Google Scholar 

  27. M. Rohlfing and S.G. Louie, “Excitations and optical spectrum of the Si(111)-(2 x 1) surface,” Phys. Rev. Lett., 83, 856, 1999.

    Article  ADS  Google Scholar 

  28. M. Rohlfing, M. Palummo, G. Onida, and R. Del Sole, “Structural and optical properties of the Ge(111)-(2 x 1) surface,” Phys. Rev. Lett., 85, 5440, 2000.

    Article  ADS  Google Scholar 

  29. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56, 1991.

    Article  ADS  Google Scholar 

  30. Z.M. Li, Z.K. Tang, H.J. Liu, N. Wang, C.T. Chan, R. Saito, S. Okada, G.D. Li, J.S. Chen, N. Nagasawa, and S. Tsuda, “Polarized absorption spectra of single-walled 4 Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal,” Phys. Rev. Lett., 87, 127401, 2001.

    Article  ADS  Google Scholar 

  31. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science, 297, 593, 2002.

    Article  ADS  Google Scholar 

  32. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman, “Structure-as signed optical spectra of single-walled carbon nanotubes,” Science, 298, 2361, 2002.

    Article  ADS  Google Scholar 

  33. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, “Excitonic effects and optical spectra of single-walled carbon nanotubes,” Phys. Rev. Lett.1, 92, 077402, 2004.

    Article  ADS  Google Scholar 

  34. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, “Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes,” Appl. Phys. A, 78, 1129, 2004.

    Article  ADS  Google Scholar 

  35. E. Chang, G. Bussi, A. Ruini, and E. Molinari, “Excitons in carbon nanotubes: an ab initio symmetry-based approach,” Phys. Rev. Lett., 92, 196401, 2004.

    Article  ADS  Google Scholar 

  36. G. Onida, L. Reining, R.W. Godby, and W. Andreoni, “Ab initio calculations of the quasiparticle and absorption spectra of clusters: the sodium tetramer,” Phys. Rev. Lett., 75, 818, 1995.

    Article  ADS  Google Scholar 

  37. M.A.L. Marques, A. Castro, and A. Rubio, ’ Assesment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in TDDFT,” J. Chem. Phys., 115, 3006, 2001. http://www.tddft.org/programs/octopus.

    Article  ADS  Google Scholar 

  38. C.R.C. Wang, S. Pollack, D. Cameron, and M.M. Kappes, “Optical absorption spectroscopy of sodium clusters as measured by collinear molecular-beam photodepletion,” J. Chem. Phys., 93, 3787, 1990.

    Article  ADS  Google Scholar 

  39. M.A.L. Marques, X. López, D. Varsano, A. Castro, and A. Rubio, “Time-dependent density-functional approach for biological photoreceptors: the case of the Green fluorescent protein,” Phys. Rev. Lett., 90, 158101, 2003.

    Article  Google Scholar 

  40. A. Marini, R. Del Sole, and A. Rubio, “Bound excitons in time-dependent densityfunctional-theory: optical and energy-loss spectra,” Phys. Rev. Lett., 91, 256402, 2003.

    Article  ADS  Google Scholar 

  41. B. Holm and U. von Barth, “Fully self-consistent GW self-energy of the electron gas,” Phys. Rev. B, 57, 2108, 1998.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Louie, S.G., Rubio, A. (2005). Quasiparticle and Optical Properties of Solids and Nanostructures: The GW-BSE Approach. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_12

Download citation

Publish with us

Policies and ethics