Hyperspectral Remote Sensing

  • Zhongping Lee
  • Kendall L. Carder
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 7)


Colored Dissolve Organic Matter Ocean Color Water Color Phytoplankton Pigment Scatter Phase Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, Y.H., A. Bricaud, and A. Morel. 1992. Light backscattering efficiency and related properties of some phytoplanktonters, Deep-Sea Research I, 39:1835-1855.Google Scholar
  2. Austin, R.W. 1974. Inherent spectral radiance signatures of the ocean surface, Ocean Color Analysis, SIO Ref. 7410.Google Scholar
  3. Austin, R.W. 1980. Gulf of Mexico, ocean-colour surface-truth measurements, Boundary-Layer Meteorology, 18:269-285.Google Scholar
  4. Austin, R.W., and T.J. Petzold,. 1981. The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner, in Oceanography from Space, edited by J.F.R. Gower, Plenum Press, New York, pg. 239-256.Google Scholar
  5. Barnard, A.H., J.R. Zaneveld, and W.S. Pegau. 1999. In situ determination of the remotely sensed reflectance and the absorption coefficient: closure and inversion, Applied Optics, 38:5108-5117.Google Scholar
  6. Behrenfeld, M.J., and P.G. Falkowski. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and Oceanography, 42:1-20.CrossRefGoogle Scholar
  7. Bidigare, R.R., J.H. Morrow, and D.A. Kiefer. 1989. Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea, Journal Marine Research, 47:323-341.Google Scholar
  8. Bricaud, A., M. Babin, A. Morel, and H. Claustre. 1995. Variability in the chlorophyll-specific absorption coefficients of naturnal phytoplankton: Analysis and parameterization, Journal Geophysical Research, 100:13321-13332.Google Scholar
  9. Bricaud, A., and A. Morel. 1986. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling, Applied Optics, 25:571-580.Google Scholar
  10. Bricaud, A., A. Morel, M. Babin, K. Allali, and H. Claustre. 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for biooptical models, Journal Geophysical Research, 103:31033-31044.Google Scholar
  11. Bricaud, A., A. Morel, and L. Prieur. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains, Limnology and Oceanography, 26:43-53.Google Scholar
  12. Bricaud, A., and D. Stramski. 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling area and the Sargasso Sea, Limnology and Oceanography, 35:562-582.Google Scholar
  13. Bukata, R.P., J.H. Jerome, J.E. Bruton, S.C. Jain, and H.H. Zwick. 1981. Optical water quality model of Lake Ontario. 1: Determination of the optical cross sections of organic and inorganic particulates in Lake Ontario, Applied Optics, 20:1696.Google Scholar
  14. Bukata, R.P., J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov. 1991a. Estimation of organic and inorganic matter in inland waters: Optical cross sections of Lakes Ontario and Ladoga, Journal Great Lakes Research, 17:461-469.CrossRefGoogle Scholar
  15. Bukata, R.P., J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov. 1991b. Satellite monitoring of opticallyactive components of inland waters: an essential input to regional climate impact studies, Journal Great Lakes Research, 17:470-478.CrossRefGoogle Scholar
  16. Bukata, R.P., J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov. 1995. Optical Properties and Remote Sensing of Inland and Coastal Waters, CRC Press,Google Scholar
  17. Boca Raton, FL. Campbell, J., and W.E. Esaias. 1983. Basis for spectral curvature algorithms in remote sensing of chlorophyll, Applied Optics, 22:1084-1093.Google Scholar
  18. Carder, K.L., F.R. Chen, Z.P. Lee, S.K. Hawes, and D. Kamykowski. 1999. Semianalytic Moderate- Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures, Journal of Geophysical Research, 104:5403-5421.Google Scholar
  19. Carder, K.L., S.K. Hawes, K.A. Baker, R.C. Smith, R.G. Steward, and B.G. Mitchell. 1991. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products, Journal of Geophysical Research, 96:20599-20611.Google Scholar
  20. Carder, K.L., and R.G. Steward. 1985. A remote-sensing reflectance model of a red tide dinoflagellate off West Florida, Limnology and Oceanography, 30:286-298.CrossRefGoogle Scholar
  21. Carder, K.L., R.G. Steward, G.R. Harvey, and P.B. Ortner. 1989. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll, Limnology and Oceanography, 34:68-81.CrossRefGoogle Scholar
  22. Carder, K.L., R.G. Steward, J.H. Paul, and G.A. Vargo. 1986. Relationships between chlorophyll and ocean color constituents as they affect remote-sensing reflectance models, Limnology and Oceanography, 31:403-413.CrossRefGoogle Scholar
  23. Ciotti, A.M., M.R. Lewis, and J.J. Cullen. 2002. Assessment of the relationships between domininant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient, Limnology and Oceanography, 47:404-417.CrossRefGoogle Scholar
  24. Clark, D.K. 1981. Phytoplankton algorithm for the Nimbus-7 CZCS, in Oceanography from space, edited by J.R.F. Gower, Plenum Press, New York, pg. 227-238.Google Scholar
  25. Clark, R.K., T.H. Fay, and C.L. Walker. 1987. Bathymetry calculations with Landsat 4 TM imagery under a generalized ratio assumption, Applied Optics, 26:4036-4038.Google Scholar
  26. Dekker, A.G., R.J. Vos, and S.W.M. Peters. 2001. Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data, International Journal Remote Sensing, 23:15-36.Google Scholar
  27. Doerffer, R., and J. Fisher. 1994. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived form satellite coastal zone color scanner data with inverse modeling methods, Journal Geophysical Research, 99:7475-7466.Google Scholar
  28. Fischer, J., and R. Doerffer. 1987. An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements, Advances. Space Research, 7:21-26.Google Scholar
  29. Fischer, J., R. Doerffer, and H. Grassl. 1986. Factor analysis of multispectral radiances over coastal and open ocean water based on radiative transfer calculations, Applied Optics, 25:448-456.Google Scholar
  30. Garver, S.A., and D. Siegel. 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea, Journal Geophysical Research, 102:18607-18625.Google Scholar
  31. Gordon, H.R. 1979. Diffuse reflectance of the ocean: the theory of its augmentation by chl a fluorescence at 685nm, Applied Optics, 18:1161-1166.Google Scholar
  32. Gordon, H.R. 1994. Modeling and simulating radiative transfer in the ocean, in Ocean Optics, edited by R.W. Spinrad, K.L. Carder, and M.J. Perry, Oxford University, New York.Google Scholar
  33. Gordon, H.R., O.B. Brown, and M.M. Jacobs. 1975. Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean, Applied Optics, 14:417-427.Google Scholar
  34. Gordon, H.R., D.K. Clark, J.L. Mueller, and W.A. Hovis. 1980a. Phytoplankton pigments from the Nimbus-7 coastal Zone Color Scanner: Comparisons with surface measurements, Science, 210:63-66.Google Scholar
  35. Gordon, H.R., R.C. Smith, and J.R.V. Zaneveld. 1980b. Introduction to ocean optics, in Ocean Optics VI, Proc. SPIE 208, pg. 1-43.Google Scholar
  36. Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, and W.W. Broenkow. 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates, Applied Optics, 22:20-36.Google Scholar
  37. Gordon, H.R., and A. Morel. 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: A review. Springer-Verlag, New York, 44 pp.Google Scholar
  38. Gordon, H.R., O.B. Brown, R.H. Evans, J.W. Brown, R.C. Smith, K.S. Baker, and D.K. Clark. 1988. A semianalytic radiance model of ocean color, Journal Geophysical Research, 93:10,909-10,924.Google Scholar
  39. Gordon, H.R., and M. Wang. 1994. Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm, Applied Optics, 33:443-452.Google Scholar
  40. Gregg, W.W., and K.L. Carder. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres, Limnology and Oceanography, 35:1657-1675.CrossRefGoogle Scholar
  41. Hawes, S.K., K.L. Carder, and G.R. Harvey. 1992. Quantum fluorescence efficiencies of marine humic and fulvic acids: effects on ocean color and fluorometric detection, in Ocean Optics, pg. 212-223.Google Scholar
  42. Hoepffner, N., and S. Sathyendranath. 1991. Effect of pigment composition on absorption properties of phytoplankton, Marine Ecology Progress Series, 73:11-23.Google Scholar
  43. Hoepffner, N., and S. Sathyendranath. 1993. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter, Journal Geophysical Research, 98:22789-22803.Google Scholar
  44. Hoge, F.E., and P.E. Lyon. 1996. Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors, Journal Geophysical Research, 101:16631-16648.Google Scholar
  45. Hoge, F.E., and R.N. Swift. 1986. Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color sensor bands, Applied Optics, 25:3677-3682.Google Scholar
  46. Hoge, F.E., C.W. Wright, P.E. Lyon, R.N. Swift, and J.K. Yungel. 2001. Inherent optical properties imagery of the western North Atlantic Ocean: Horizontal spatial variability of the upper mixed layer, Journal Geophysical Research, 106:31129-31140.Google Scholar
  47. Hojerslev, N.K. 2001. Analytic remote-sensing optical algorithms requiring simple and practical field parameter inputs, Applied Optics, 40:4870-4874.Google Scholar
  48. IOCCG. 2000.Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, in Reports of the International Ocean-Colour Coordinating Group, No.3, edited by S. Sathyendranath, IOCCG, Dartmouth, Canada.Google Scholar
  49. Jerlov, N.G. 1976. Marine Optics, Elsevier, New York.Google Scholar
  50. Jerome, J.H., R.P. Bukata, and J.R. Miller. 1996. Remote sensing reflectance and its relationship to optical properties of natural waters, International Journal of Remote Sensing, 17:3135-3155.Google Scholar
  51. Kahru, M., and B.G. Mitchell. 1999. Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current, International Journal of Remote Sensing, 20:3423-3429.Google Scholar
  52. Kirk, J.T.O. 1991. Volume scattering function, average cosines, and the underwater light field, Limnology and Oceanography, 36:455-467.CrossRefGoogle Scholar
  53. Kirk, J.T.O. 1994. Light & Photosynthesis in Aquatic Ecosystems, University Press, Cambridge.Google Scholar
  54. Lee, Z.P. 1994. Visible-infrared Remote-sensing Model and Applications for Ocean Waters, Ph. D thesis, University of South Florida, St. Petersburg, Florida.Google Scholar
  55. Lee, Z.P., and K.L. Carder. 2002. Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data, Applied Optics, 41:2191-2201.Google Scholar
  56. Lee, Z.P., and K.L. Carder. 2004. Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance, Remote Sensing Environment, 89(3):361-368.Google Scholar
  57. Lee, Z.P., K.L. Carder, S.K. Hawes, R.G. Steward, T.G. Peacock, and C.O. Davis. 1994. A model for interpretation of hyperspectral remote sensing reflectance, Applied Optics, 33:5721-5732.Google Scholar
  58. Lee, Z.P., K.L. Carder, R.G. Steward, T.G. Peacock, C.O. Davis, and J.L. Mueller. 1996a. Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements, in Ocean Optics XIII, edited by S.G. Ackleson, and R. Frouin, Proc. SPIE 2963, pg. 160-166.Google Scholar
  59. Lee, Z.P., K.L. Carder, R.G. Steward, and M.J. Perry. 1996b. Estimating primary production at depth from remote sensing, Applied Optics, 35:463-474.Google Scholar
  60. Lee, Z.P., K.L. Carder, C.D. Mobley, R.G. Steward, and J.S. Patch. 1998a. Hyperspectral remote sensing for shallow waters. 1. A semianalytical model, Applied Optics, 37:6329-6338.Google Scholar
  61. Lee, Z.P., K.L. Carder, R.G. Steward, T.G. Peacock, C.O. Davis, and J.S. Patch. 1998b. An empirical algorithm for light absorption by ocean water based on color, Journal Geophysical Research, 103:27967- 27978.Google Scholar
  62. Lee, Z.P., M.R. Zhang, K.L. Carder, and L.O. Hall. 1998c. A neural network approach to deriving optical properties and depths of shallow waters, in Ocean Optics XIV, Kona, HI.Google Scholar
  63. Lee, Z.P., K.L. Carder, C.D. Mobley, R.G. Steward, and J.S. Patch. 1999. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization, Applied Optics, 38:3831-3843.Google Scholar
  64. Lee, Z.P., K.L. Carder, R.F. Chen, and T.G. Peacock. 2001. Properties of the water column and bottom derived from AVIRIS data, Journal Geophysical Research, 106:11639-11652.Google Scholar
  65. Lee, Z.P., K.L. Carder, and R. Arnone. 2002a. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters, Applied Optics, 41:5755-5772.Google Scholar
  66. Lee, Z.P., K.L. Carder, and K.P. Du. 2002b. Influence of particle scattering on the model parameter of remotesensing reflectance, in Ocean Optics XVI, Santa Fe, New Mexico.Google Scholar
  67. Lewis, M.R., M. Carr, G. Feldman, W. Esaias, and C. McMclain. 1990. Influence of Penetrating solar radiation on the heat budget of the equatorial pacific ocean, Nature, 347:543-545.Google Scholar
  68. Lyzenga, D.R. 1978. Passive remote-sensing techniques for mapping water depth and bottom features, Applied Optics, 17:379-383.Google Scholar
  69. Lyzenga, D.R. 1981. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data, International Journal of Remote Sensing, 2:71-82.Google Scholar
  70. Maritorena, S., A. Morel, and B. Gentili. 1994. Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo, Limnology and Oceanography, 39:1689-1703.CrossRefGoogle Scholar
  71. Maritorena, S., D.A. Siegel, and A.R. Peterson. 2000. Optimization of a semianalytical ocean color model for global-scale applications, Applied Optics, 41:2705-2714.Google Scholar
  72. Marra, J., T. Dickey, W.S. Chamberlin, C. Ho, T. Granata, D.A. Kiefer, C. Langdon, R.C. Smith, K.S. Baker, R.R. Bidigare, and M. Hamilton. 1992. Estimation of seasonal primary production from moored optical sensors in the Sargasso Sea, Deep-Sea Research, 97:7399-7412.Google Scholar
  73. Marshall, B.R., and R.C. Smith. 1990. Raman scattering and in-water ocean properties, Applied Optics, 29:71- 84.Google Scholar
  74. McClain, C.R., K. Arrigo, K.-S. Tai, and D. Turk. 1996. Observations and simulations of physical and biological process at ocean weather station P, 1951-1980, Journal Geophysical Research, 101:3697-3713.Google Scholar
  75. Millie, D.F., O.M. Schofied, G.J. Kirkpatrick, G. Johnsen, P.A. Tester, and B.T. Vinyard. 1997. Detection of harmful algal blooms using photopigmnets and absorption signature: A case study of the Florida red tide dinoflagellate, Gymnodinium breve, Limnology and Oceanography, 42:1240-1251.Google Scholar
  76. Mitchell, B.G., and O. Holm-Hansen. 1990. Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models, Deep-Sea Research, 38:1009-1028.Google Scholar
  77. Mitchell, B.G., and M. Kahru. 1998. Algorithms for SeaWiFS standard products developed with the CalCOFI big-optical data set, Scripps Institute of Oceanography, La Jolla, CA 92093, USA, pg. 133-147.Google Scholar
  78. Mobley, C.D. 1994. Light and Water: radiative transfer in natural waters, Academic Press, New York. Mobley, C.D. 1995. Hydrolight 3.0 Users' Guide, SRI International, Menlo Park, Calif.Google Scholar
  79. Mobley, C.D., L.K. Sundman, and E. Boss. 2002. Phase function effects on oceanic light fields, Applied Optics, 41:1035-1050.Google Scholar
  80. Morel, A. 1974. Optical properties of pure water and pure sea water, in Optical aspects of oceanography, edited by N.G. Jerlov, and Nielsen, E. S., Academic, New York, pg. 1-24.Google Scholar
  81. Morel, A., and D. Antoine. 1994. Heating rate within the upper ocean in relation to its bio-optical state, Journal of Physical Oceanography, 24:1652-1665.Google Scholar
  82. Morel, A., D. Antoine, and B. Gentili. 2002. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function, Applied Optics, 41:6289-6306.Google Scholar
  83. Morel, A., and A. Bricaud. 1981. Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications, in Oceanography from space, edited by J.F.R. Gower, Plenum, New York.Google Scholar
  84. Morel, A., and B. Gentili. 1991. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution, Applied Optics, 30:4427-4438.Google Scholar
  85. Morel, A., and B. Gentili. 1993. Diffuse reflectance of oceanic waters (2): Bi-directional aspects, Applied Optics, 32:6864-6879.Google Scholar
  86. Morel, A., and L. Prieur. 1977. Analysis of variations in ocean color, Limnology and Oceanography, 22:709- 722.CrossRefGoogle Scholar
  87. Mueller, J.L. 1976. Ocean color spectra measured off the Oregon coast: characteristic vectors, Applied Optics, 15:394-402.Google Scholar
  88. Nelson, J.R., and C.Y. Robertson. 1993. Detrital spectral absorption: Laboratory studies of visible light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field measurements, Journal Marine Research, 51:181-207.Google Scholar
  89. Neumann, A., H. Krawczyk, and T. Walzel. 1995. A complex approach to quantitative interpretation of spectral high resolution imagery, in Third Thematic Conference on Remote Sensing for Marine and Coastal Environments, Seattle, USA.Google Scholar
  90. Ohlmann, J.C., D.A. Siegel, and C.D. Mobley. 2000. Ocean radiant heating. Part I: Optical influences, Journal of Physical Oceanography, 30:1833-1848.Google Scholar
  91. O'Reilly, J., S. Maritorena, B.G. Mitchell, D. Siegel, K.L. Carder, S. Garver, M. Kahru, and C. McClain. 1998.Google Scholar
  92. Ocean color chlorophyll algorithms for SeaWiFS, Journal Geophysical Research, 103:24937-24953.Google Scholar
  93. Peacock, T.G., K.L. Carder, and C.O. Davis, and R. G. Steward. 1990. Effects of fluorescence and water Raman scattering on models of remote-sensing reflectance, in Ocean Optics X, SPIE, 1990, pg. 303-319.Google Scholar
  94. Petzold, T.J. 1972. Volume scattering functions for selected natural waters, Scripps Institution Oceanography. pg. 72-78.Google Scholar
  95. Philpot, W.D. 1989. Bathymetric mapping with passive multispectral imagery, Applied Optics, 28:1569-1578.Google Scholar
  96. Platt, T. 1986. Primary production of ocean water column as a function of surface light intensity: algorithms for remote sensing, Deep-Sea Research, 33:149-163.Google Scholar
  97. Platt, T., and S. Sathyendranath. 1988. Oceanic primary production: estimation by remote sensing at local and regional scales, Science, 241:1613-1620.Google Scholar
  98. Pope, R., and E. Fry. 1997. Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements, Applied Optics, 36:8710-8723.Google Scholar
  99. Preisendorfer, R.W. 1976. Hydrologic optics vol. 1: introduction, National Technical Information Service, Springfield.Google Scholar
  100. Prieur, L., and S. Sathyendranath. 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials, Limnology and Oceanography, 26:671-689.CrossRefGoogle Scholar
  101. Roesler, C.S., and E. Boss. 2003. Spectral beam attenuation coefficient retrieved from ocean color inversion, Geophysical Research Letters, 30(9):1468.Google Scholar
  102. Roesler, C.S., and M.J. Perry. 1995. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance, Journal Geophysical Research, 100:13279-13294.Google Scholar
  103. Roesler, C.S., M.J. Perry, and K.L. Carder. 1989. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters, Limnology and Oceanography, 34:1510-1523.CrossRefGoogle Scholar
  104. Sathyendranath, S., G. Cota, V. Stuart, M. Maass, and T. Platt. 2001. Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches, International Journal of Remote Sensing, 22:249-273.Google Scholar
  105. Sathyendranath, S., L. Lazzara, and L. Prieur. 1987. Variations in the spectral values of specific absorption of phytoplankton, Limnology and Oceanography, 32:403-415.CrossRefGoogle Scholar
  106. Sathyendranath, S., T. Platt, C.M. Caverhill, R.E. Warnock, and M.R. Lewis. 1989a. Remote sensing of oceanic primary production: computations using a spectral model, Deep-Sea Research, 36:431-453.Google Scholar
  107. Sathyendranath, S., L. Prieur, and A. Morel. 1989b. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters, International Journal of Remote Sensing, 10:1373-1394.Google Scholar
  108. Sathyendranath, S., and T. Platt. 1997. Analytic model of ocean color, Applied Optics, 36:2620-2629.Google Scholar
  109. Sathyendranath, S., and T. Platt. 1998. Ocean color model incorporating transspectral processes, Applied Optics, 37:2216-2227.Google Scholar
  110. Schiller, H., and R. Doerffer. 1999. Neural network for emulation of an inverse model -- operational derivation of Case II water properties from MERIS data, International Journal of Remote Sensing, 20:1735-1746.Google Scholar
  111. Siegel, D., and A.F. Michaels. 1996. Quantification of non-algal light attenuation in the Sargasso Sea: Implications for biogeochemistry and remote sensing, Deep-Sea Research, 43(2-3):321-345.Google Scholar
  112. Smith, R.C., and K.S. Baker. 1981. Optical properties of the clearest natural waters, Applied Optics, 20:177- 184.Google Scholar
  113. Smyth, T.J., S.B. Groom, D.G. Cummings, and C.A. Llewellyn. 2002. Comparison of SeaWiFS bio-optical chlorophyll-a algorithms within the OMEXII programme, International Journal of Remote Sensing, 23:2321-2326.Google Scholar
  114. Stavn, R.H., and A.D. Weidemann. 1990. Raman scattering effects at the shorter visible wavelengths in clear ocean waters, in Ocean Optics X, SPIE, pg. 94-100.Google Scholar
  115. Stramski, D., A. Bricaud, and A. Morel. 2001. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community, Applied Optics, 40:2929-2945.Google Scholar
  116. Stuart, V., S. Sathyendranath, T. Platt, H. Maass, and B. Irwin. 1998. Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra, Journal Plankton Research, 20:187- 217.Google Scholar
  117. Stumpf, R.P., and J.R. Pennock. 1991. Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary, Remote Sensing Evironment, 38:183-191.Google Scholar
  118. Voss, K.J., C.D. Mobley, L.K. Sundman, J.E. Ivey, and C.H. Mazel. 2003. The spectral upwelling radiance distribution in optically shallow waters, Limnology and Oceanography, 48:364-373.CrossRefGoogle Scholar
  119. Yentsch, C.S., and D.A. Phinney. 1985. Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations, Journal of Plankton Research, 7:617-632.Google Scholar
  120. Yentsch, C.S., and C.M. Yentsch. 1979. Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra, Journal Marine Research, 37:471-483.Google Scholar
  121. Zaneveld, J.R.V. 1982. Remote sensed reflectance and its dependence on vertical structure: a theoretical derivation, Applied Optics, 21:4146-4150.Google Scholar
  122. Zaneveld, J.R.V. 1995. A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties, Journal Geophysical Research, 100:13135-13142.Google Scholar
  123. Zaneveld, J.R.V., J.C. Kitchen, and J.L. Mueller. 1993.Vertical structure of productivity and its vertical integration as derived from remotely sensed observations, Limnology and Oceanography, 38:1384-1393.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Zhongping Lee
    • 1
  • Kendall L. Carder
    • 2
  1. 1.Naval Research Laboratory, Code 7333Stennis Space CenterUSA
  2. 2.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA

Personalised recommendations