Advertisement

Remote Sensing of Harmful Algal Blooms

  • Richard P. Stumpf
  • Michelle C. Tomlinson
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 7)

Keywords

Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Marine Ecology Progress Series Harmful Algal Bloom Ocean Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.M. (ed.). 1995. ECOHAB, The ecology and oceanography of harmful algal blooms: A national research agenda. Woods Hole Oceanographic Institution, Woods Hole, MA. 66 pp.Google Scholar
  2. Anderson, D.M., P. Hoagland, Y. Kaoru, and A.W. White. 2000. Estimated annual economic impacts from harmful algal blooms (HABs) in the United States. Woods Hole Oceanog. Inst. Tech. Rept., WHOI-2000- 11, 97 pp.Google Scholar
  3. Balch, W.M., R.W. Eppley, M.R. Abbott, and F.M.H. Reid. 1989. Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates. Journal of Plankton Research, 11(3):575-58CrossRefGoogle Scholar
  4. Budd, J.W., A.M. Beeton, R.P. Stumpf, David A. Culver, and W.C. Kerfoot. 2001. Satellite observations of Microcystis blooms in western Lake Erie. Verhandlungen Internationale Vereinigung fur Limnologie, 27:3787-379Google Scholar
  5. Cannizzaro, J.P., K.L. Carder, F.R. Chen, J.J. Walsh, Z.P. Lee, C. Heil, and T. Villareal. 2002. A novel optical classification technique for detection of red tides in the Gulf of Mexico: application to the 2001- 2002 bloom event. In: Proceedings of the 10th International Conference on Harmful Algae, St.Pete Beach, Florida, 21-25 October 2002. pg. 4Google Scholar
  6. Carder, K.L. and R.G. Steward. 1985. A remote-sensing reflectance model of the red-tide dinoflagellate off west Florida. Limnology and Oceanography, 30:286-29Google Scholar
  7. Carreto, J.I., M.O. Carignan, G. Daleo, and S.G. De Marco. 1990. Occurrence of mycosporine-like amino acids in red-tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds. Journal of Plankton Research, 12(5):909-92CrossRefGoogle Scholar
  8. Chomko, R.M. and H.R. Gordon. 1998. Atmospheric correction of ocean color imagery: use of the Junge power law aerosol size distribution with variable refractive index to handle aerosol absorption. Applied Optics, 37:5560-557CrossRefGoogle Scholar
  9. Cullen, J.J., A.M. Ciotti, R.F. Davis, and M.R. Lewis. 1997. Optical detection and assessment of algal blooms. Limnology and Oceanography, 42:1223-123Google Scholar
  10. Eslinger, D.L., M. WanderWilt, R. Connell, R. Swift, F.Hoge. 2003. Airborne water quality measurements in shallow coastal waters. Proceedings of the 3rd Biennial Coastal GeoTools Conference, Charleston SC, January 6-9, 2003. NOAA Coastal Services Center (http://www.csc.noaa.gov/GeoTools/).Google Scholar
  11. Etheridge, S. M., C. S. Roesler, H. M. Franklin, and E. Boss. 2002. Do bio-optical parameters and relationships apply to extreme algal blooms? Ocean Optics XVI Conference Proceedings (SPIE).Google Scholar
  12. Flocks, J., Stumpf, R., and Kindinger, J., 2002. Satellite imagery of the 1997 Bonnet Carré spillway opening; In: Penland, S., A. Beall, and J. Kindinger (eds.) Environment atlas of the Lake Pontchartrain Basin: U.S. Geological Survey Open-File Report 02-206, 2 p.; http://pubs.usgs.gov/of/2002/of02-206/.Google Scholar
  13. Gastrich, M.G., and C.E. Wazniak. 2002. A brown tide bloom index based on the potential harmful effects of the brown tide alga, Aurococcus anophagefferens. Aquatic Ecosystem Health & Management, 5(4):435- 44CrossRefGoogle Scholar
  14. Gomez, R.A., R. Alvarez, and O.S. Garcia. 1999. Red tide evolution in the Mazatlán Bay area from remotely sensed sea surface temperatures. Geoffisica Internacional, 38(2):63-7Google Scholar
  15. Gordon, H.R., O.T. Brown, R.H. Evans, J.W. Brown, R.C. Smith, K.S. Baker, D.K. Clark. 1988. A semianalytic radiance model of ocean color. Journal of Geophysical Research, 93(D9):10,909-10,92Google Scholar
  16. Gordon, H.R. and M. Wang. 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied Optics, 33:443-45CrossRefGoogle Scholar
  17. Gower, J.F.R. 1994. Red tide monitoring using AVHRR HRPT imagery from a local receiver. Remote Sensing of Environment, 48:309-31CrossRefGoogle Scholar
  18. Haddad, K.D. 1982. Hydrographic factors associated with west Florida toxic red tide blooms: An assessment for satellite prediction and monitoring. M.Sc. Thesis. University of South Florida, St.Petersburg, FL.Google Scholar
  19. Hannach, G., and A.C. Sigleo. 1998. Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Marine Ecology Progress Series, 174:307-22CrossRefGoogle Scholar
  20. Hollligan, P.M., M. Viollier, C. Dupouy, and J. Aiken. 1983. Satellite studies on the distribution of chlorophyll and dinoflagellate blooms in the western English Channel. Continental Shelf Research (vol. 2, NOS 2/3):81-9Google Scholar
  21. Huang, W.G., and X.L. Lou. 2003. AVHRR detection of red tides with neural networks. International Journal of Remote Sensing, 24(10):1991-199CrossRefGoogle Scholar
  22. Ishizaka, J. 2003. Detection of red tide events in the Ariake Sound, Japan. Ocean Remote Sensing and Applications, 4892:264-26Google Scholar
  23. Johnsen, G., and E. Sakshaug. 2000. Monitoring of harmful algal blooms along the Norwegian coast using bio-optical methods. South African Journal of Marine Science, 22:309-32Google Scholar
  24. Kahru, M., and B.G. Mitchell. 1998. Spectral reflectance and absorption of a massive red tide off southern California. Journal of Geophysical Research, 103(C10):21,601-21,60Google Scholar
  25. Kahru, M., J.M. Leppänen, O. Rud, and O.P. Savchuk. 2000. Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Marine Ecology Progress Series, 207:13-1CrossRefGoogle Scholar
  26. Keafer, B.A., and D.M. Anderson. 1993. Use of remotely-sensed sea surface temperatures in studies of Alexandrium tamarense bloom dynamics. In: Toxic Phytoplanton Blooms in the Sea, Elsevier, Amsterdam (Netherlands). pg. 763-768, Dev. Mar. Biol., volGoogle Scholar
  27. Lansberg, J.H. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2):113-39CrossRefGoogle Scholar
  28. Laurion, I., A. Lami, and R. Sommaruga. 2002. Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology, 26:283-29CrossRefGoogle Scholar
  29. Lavender, S.J. and S.B. Groom. 2001. The detection and mapping of algal blooms from space. International Journal of Remote Sensing, 22(2-3):197-20Google Scholar
  30. Lin, Q., Y. Zhang, Y. Nie, and Y. Guan. 2003. Detection of harmful algal blooms over the Gulf of Bohai Sea in China at visible and near infrared (NIR) wavelengths of remote sensing. Journal of Electromagnetic Waves and Applications, 17(6):861-87CrossRefGoogle Scholar
  31. Liu, G., G.S. Janowitz, D. Kamykowski. 2001. Influence of environment nutrient conditions on Gymnodinium breve (Dinophyceae) population dynamics: a numerical study. Marine Ecology Progress Series, 213:13- 3CrossRefGoogle Scholar
  32. McLeroy-Etheridge, S.L., and C.S. Roesler. 1998. Are the inherent optical properties of phytoplankton responsible for the distinct ocean colors observed during harmful algal blooms? SPIE Ocean Optics XIV, 1:109-11Google Scholar
  33. Millie, D.F., O.M. Schofield, G.J. Kirkpatrick, G. Johnsen, P.A. Tester, and B.T. Vinyard. 1997. Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, Gymnodinium breve. Limnology and Oceanography, 42(5, part 2):1240- 125Google Scholar
  34. Moisan, T.A., and B.G. Mitchell, 2001. UV absorption by mycosporine-like amino acids in Phaeocystis antarctica Karsten induced by photosynthetically available radiation. Marine Biology, 38:217-22CrossRefGoogle Scholar
  35. Moita, M.T., P.B. Oliveria, J.C. Mendes, and A.S. Palma. 2003. Distribution of chlorophyll a and Gymnodinium catenatum associated with coastal upwelling plumes off central Portugal. International Journal of Ecology, 24:S125-S13Google Scholar
  36. Morel, A., and L. Prieur, 1977. analysis of variations in ocean color. Limnology and Oceanography, 22 (4):709-72CrossRefGoogle Scholar
  37. Mueller, J.L. 1979. Prospects for measuring phytoplankton bloom extent and patchiness using remotely sensed ocean color images: an example. In: Toxic Dinoflagellate Blooms, Elsevier, North Holland, Inc., New York. Pp. 303-30Google Scholar
  38. Neale, P.J., A.T. Banaszak, and C.R. Jarriel. 1998. Untraviolet sunscreens in Gymnodinium sanguineum (dinophyceae): Mycosporine-like amino acids protect against inhabition of photosynthesis. Journal of Phycology 34:928-93CrossRefGoogle Scholar
  39. O’Reilly, J.E., S. Maritorena, D. Siegel, M.C. O'Brien, D. Toole, B.G. Mitchell, M. Kahru., F.P. Chavez., P. Strutton, G. Cota, S.B. Hooker., C.R. McClain, K.L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G.F. Moore, J. Aiken, K.R. Arrigo, R. Letelier, and M. Culver. 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. In: SeaWiFS Postlaunch Technical Report Series, Hooker, S.B and E.R. Firestone [Eds]. Volume 11, SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA, Goddard Space Flight Center, Greenbelt, Maryland. 9-2Google Scholar
  40. Pettersson, L..H., D.D. Durand, E. Svendsen, T. Noji, H. Soiland, S. Groom. 2000a. DeciDe for near realtime use of ocean colour data in management of toxic algae blooms. NERSC Technical Report no. 180- A, Nansen Environmental and Remote Sensing Center, Bergen, Norway, http://www.nersc.no/Decide- HAB/Google Scholar
  41. Pettersson, L.H., D. Durand, T. Noji, H. Soiland, E. Svendsen, S. Groom, S. Lavender, P. Regner, O.M. Johannessen. 2000b. Satellite observations and forecasting can mitigate effects of toxic algae blooms. ICES CM 2000/O:07(Poster).Google Scholar
  42. Pitcher, G.C., A.J. Boyd, D.A. Horstman, B.A. Mitchell-Innes. 1998. Subsurface dinoflagellates populations, frontal blooms and the formation of red tide in the southern Benguela upwelling system. Marine Ecology Progress Series, 172:253-26CrossRefGoogle Scholar
  43. Pitcher, G.C., and D. Calder. 2000. Harmful algal blooms of the Southern Benguela Current: A review and appraisal of monitoring from 1989 to 1997. South African Journal of Marine Science, 22:255-27Google Scholar
  44. Pitcher, G., P. Montiero, and A. Kemp. (in press). The potential use of a hydrodynamic model in the prediction of harmful algal blooms in the southern Benguela. Raine, R., and T. McMahon. 1998. Physical dynamics on the continental shelf off southwestern Ireland and their influence on coastal phytoplankton blooms. Continental Shelf Research, 18:883-91Google Scholar
  45. Raine, R., O. Boyle, T. O’Higgins, M. White, J. Patching, B. Cahill, and T. McMahon. 2001. A satellite and field portrait of a Karenia mikimotoi bloom off the south coast of Ireland, August 1998. Hydrobiologia, 465:187-19CrossRefGoogle Scholar
  46. Roesler, C.S., 2003. Achievements and limitation in ocean color detection of red tides: case studies in the Benguela upwelling system and the Gulf of Maine. Proceedings of the Workshop on Red Tide Monitoring in Asian Coastal Waters., (http://fol.fs.a.u-tokyo.ac.jp/rtw/), 5 pp.Google Scholar
  47. Roesler, C.S., Etheridge, S.M., Pitcher, G.C. (in press). Application of an ocean color algal taxa detection model to red tides in the Southern Benguela. Proceedings of the Tenth International Conference for Harmful Algal Blooms Schofield, O., J. Grzymski, W.P. Bissett, G.J. Kirkpatrick, D.G. Millie, M. Moline, and C. Roesler. 199Google Scholar
  48. Optical monitoring and forecasting systems for harmful algal blooms: possibility or pipe dream? Journal of Phycology, 35:1477-149Google Scholar
  49. Schollaert, S.E., Yoder, J.a., J.E. O’Reilly, D.L. Westphal. 2003. Influence of dust and sulfate aerosols on ocean color spectra and chlorophyll a concentrations derived from SeaWiFS off the U.S. east coast. Journal of Geophysical Research, 108(C6):22/1-22/1Google Scholar
  50. Scholin, C.A., F. Gulland, G.J. Douchette, S. Benson, M. Busman, F.P.Chavez, J. Cordaro, R. DeLong, A. De Volgelaere, J. Harvey, M. Haulena, K. Lefebvre, T. Lipscomb, S. Loscutoff, L.J. Lowenstine, R. Marin III,P.E. Miller, W.A. McLellan, P.D.R. Moeller, C.L. Powell, T. Rowles, P.Silvagni, M. Silver, T. Spraker, V. Trainer and F.M. Van Dolah. 2000. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature, 403:80-8CrossRefGoogle Scholar
  51. Shumway, S.E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society, 21:65-10CrossRefGoogle Scholar
  52. Shumway, S.E. 1995. Phycotoxin-related shellfish poisoning: bivalve molluscs are not the only vectors. Review Fisheries in Science, 3:1-3CrossRefGoogle Scholar
  53. Siegel, D.A., M. Wang, S. Maritorena, and W. Robinson. 2000. Atmospheric correction of satellite ocean color imagery: the black pixel assumption. Applied Optics, 39:3582-359CrossRefGoogle Scholar
  54. Smayda, T.J. 1997. Harmful algal blooms: their ecophysioogy and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 45:1137-115CrossRefGoogle Scholar
  55. Sordo, I., E.D. Barton, J.M. Cotos, and Y. Pazos. 2001. An inshore poleward current in the NW of the Iberian Peninsula detected from satellite images, and its relation with G. catenatum and D. acuminata blooms in the Galican Rias. Estuarine, Coastal and Shelf Science, 53:787-79Google Scholar
  56. Steidinger, K.A., G.A. Vargo, P.A. Tester, and C.R. Tomas. 1997. Bloom dynamics and physiology of Gymnodinium breve. In: Anderson, D. M., A.E. Cembrella, and G.M. Hallegraeff. [Eds.]. The Physiological Ecology of Harmful Algal Blooms. Elsevier, Amsterdam.Google Scholar
  57. Stumpf, R.P., and M.A. Tyler. 1988. Satellite detection of bloom and pigment distribution in estuaries. Remote Sensing of Environment, 24:385-40CrossRefGoogle Scholar
  58. Stumpf, R.P., V. Ransibrahmanakul, K.A. Steidinger, and P.A. Tester. 1998. Observations of sea surface temperature and winds in association with Florida, USA red tides (Gymnodinium breve blooms). In: Harmful Algae. Reguera, B., J. Blanco, M.L. Fernandez, T. Wyatt. (Eds.). Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, France. pg. 145-14Google Scholar
  59. Stumpf, R.P. 2001. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms. Journal of Human and Ecological Risk Assessment, 7:1363-136CrossRefGoogle Scholar
  60. Stumpf, R.P., M.E. Culver, P.A. Tester, M. Tomlinson, G.J. Kirkpatrick, B.A. Pederson, E. Truby, V. Ransibrahmanukul, and M. Soracco. 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae, 2:147-16Google Scholar
  61. Subramaniam, A., and E.J. Carpenter. 1994. An empirically derived protocol for the detection of blooms of the marine cyanobacterium Trichodesmium using CZCS imagery. International Journal of Remote Sensing, 15(8):1559-156CrossRefGoogle Scholar
  62. Subramaniam, A., C.W. Brown, R.R. Hood, E.J. Carpenter, D.G. Capone. 2002. Detecting Trichodesmium blooms in SeaWiFS imagery. Deep-Sea Research II, 49:107-12CrossRefGoogle Scholar
  63. Suh, Y.S., J.H. Kim, and H.G. Kim. 2000. Relationship between Sea Surface Temperature derived from NOAA satellites and Cochlodinium polykrikoides red tide occurrence in Korean coastal waters. Journal of the Korean Environmental Science Society, 9(3):215-22Google Scholar
  64. Svejkovsky, J. and J. Shandley. 2001. Detection of offshore plankton blooms with AVHRR and SAR imagery. International Journal of Remote Sensing, 22:471-48CrossRefGoogle Scholar
  65. Tang, D.L., D.R. Kester, I.H. Ni, Y.Z. Qi, and H. Kawamura. 2003. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful Algae, 2:89-9Google Scholar
  66. Tester, P.A., R.P. Stumpf, F.M. Vukovich, P.K. Fowler, and J.T. Turner. 1991. An expatriate red tide bloom: transport, distribution, and persistence. Limnology and Oceanography, 6(5):1053-106CrossRefGoogle Scholar
  67. Tester, P.A., R.P. Stumpf, and K. Steidinger. 1998. Ocean color imagery: What is the minimum detection level for Gymnodinium breve blooms? In: Harmful Algae. Reguera. B, J. Blanco., M.L. Fernandez and T. Wyatt (Eds). Xunta de Galacia and Intergovernmental Oceanographic Commission of UNESCO.Google Scholar
  68. Tester, P.A., and R.P. Stumpf. 1998. Phytoplankton blooms and remote sensing: what is the potential for early warning? Journal of Shellfish Research, 17(5):1469-147Google Scholar
  69. Tomlinson, M.C., R.P. Stumpf, V. Ransibrahmanakul, E.W. Truby, G.J. Kirkpatrick, B.A. Pederson, G.A. Vargo, and C.A. Heil, C.A. 2004. Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico. Remote Sensing of Environment, 91(3-4):293-30CrossRefGoogle Scholar
  70. 296 Stumpf and Tomlinson Turner, R.E., Q. Dortch, N.N. Rabalais. 1999. Effects of the 1997 Bonnet Carré opening on Nutrients and Phytoplankton in Lake Pontchartrain. Report for the Lake Pontchartrain Basin Foundation, Lakeway III Suite 2070, 3838 N. Causeway Blvd, Metairie, Louisiana 70009, USA.Google Scholar
  71. Yin, K., P.J. Harrison, J. Chen, W. Huang, and P.Y. Qian. 1999. Red tides during spring 1998 in Hong Kong: is El Niño responsible? Marine Ecology Progress Series, 187:289-29CrossRefGoogle Scholar
  72. Zhu, M. and S. Ye. 2003. Red tide monitoring in East China Sea. Proceedings of the Workshop on Red Tide Monitoring in Asian Coastal Waters., (http://fol.fs.a.u-tokyo.ac.jp/rtw/), 5 pp.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Richard P. Stumpf
    • 1
  • Michelle C. Tomlinson
    • 2
  1. 1.National Oceanic and Atmospheric AdministrationNational Ocean ServiceSilver SpringUSA
  2. 2.National Oceanic and Atmospheric AdministrationNational Ocean ServiceSilver SpringUSA

Personalised recommendations