9

  • Javier Romero
  • Kun-Seop Lee
  • Marta Pérez
  • Miguel A. Mateo
  • Teresa Alcoverro

Abstract

The term‘nutrient’ applies to any material that, taken into a living organism, serves to sustain it in its existence, promoting growth, replacing losses, or providing energy. In the framework of primary production ecology, the term‘nutrients’ is usually understood as ‘inorganic nutrients’, that is, inorganic salts or ions that provide the elements necessary for plant survival, growth, and reproduction. Almost all the natural occurring elements are found in plant tissues; however, only a reduced number (17) are necessary for plant growth: these are called essential elements.

Keywords

Chlorophyll Lignin Sedimentation Nitrite Immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol 84: 597–608Google Scholar
  2. Agawin NSR, Duarte CM and Fortes MD (1996) Nutrient limitation of Philippine seagrasses (Cape Boliano, NW Philippines): In situ experimental evidence. Mar Ecol Prog Ser 138: 233–243Google Scholar
  3. Alcoverro T, Duarte, CM and Romero J (1995) Annual growth dynamics of Posidonia oceanica: Contribution of large-scale versus local factors to seasonality. Mar Ecol Prog Ser 120: 203–210Google Scholar
  4. Alcoverro T, Duarte CM and Romero J (1997) The influence of herbivores on Posidonia oceanica epiphytes. Aquat Botany 56: 93–104Google Scholar
  5. Alcoverro T, Manzanera M and Romero J (2000) Nutrient mass balance of the seagrass Posidonia oceanica: The importance of nutrient retranslocation. Mar Ecol Prog Ser 194: 13–21Google Scholar
  6. Alcoverro T, Romero J, Duarte CM and López NI (1997) Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Mar Ecol Prog Ser 146: 155–161Google Scholar
  7. Alcoverro T, Zimmerman RC, Kohrs DG and Alberte RS (1999) Resource allocation and sucrose mobilization in light-limited eelgrass Zostera marina. Mar Ecol Prog Ser 187: 121–131Google Scholar
  8. Almasi MN, Hoskin CM, Reed JK and Milo J (1987) Effects of natural and artificial Thalassia on rates of sedimentation. J Sedimentary Petrology 57: 901–906Google Scholar
  9. Bach SD, Thayer GW and LaCroix MW (1986) Export of detritus from eelgrass (Zostera marina) beds near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 28: 265–278Google Scholar
  10. Béthoux JP and Copin-Montégut G (1986) Biological fixation of atmospheric nitrogen in the Mediterranean Sea. Limnol Oceanogr 31: 1353–1358Google Scholar
  11. Bird KT, Johnson JR and Jewett-Smith J (1998) In vitro culture of the seagrass Halophila decipiens. Aquat Bot 60: 377–387Google Scholar
  12. Blackburn TH, Newell DB and Wiebe WJ (1994) Active mineral cycling in a Jamaican seagrass sediment. Mar Ecol Prog Ser 110: 233–239Google Scholar
  13. Boon PI, Moriarty DJW and Saffigna PG (1986a) Rates of ammonium turnover and the role of amino-acid deamination in seagrass Zostera capricorni beds of Moreton Bay, Australia. Mar Biol 91: 259–268Google Scholar
  14. Boon PI, Moriarty DJW and Saffigna PG (1986b) Nitrate metabolism in sediments from seagrass Zostera capricorni beds of Moreton Bay, Australia. Mar Biol 91: 269–276Google Scholar
  15. Borum J, Murray L and Kemp MW (1989) Aspects of nitrogen acquisition and conservation in eelgrass plants. Aquat Bot 35: 289–300Google Scholar
  16. Boudouresque CF, Giraud G, Thommeret J and Thommeret Y (1980) First attempt at dating by 14C the undersea beds of dead Posidonia oceanica in the bay of Port-Man (Port-Cros, Var, France). Travaux Scientifiques Parc Natl Port-Cros 6: 239–242Google Scholar
  17. Brix H and Lyngby JE (1985) Uptake and translocation of phosphorus in eelgrass (Zostera marina). Mar Biol 90: 111–116Google Scholar
  18. Buia MC, Cormaci M, Furnari G and Mazzella L (1989) Posidonia oceanica off Capo Passaro (Sicily, Italy): Leaf phenology and leaf algae epiphytic community. In: Boudouresque CFA, Meinesz E, Fresi and Gravez V (eds) International Workshop on Posidonia Beds, pp 63–68. GIS Posidonie 2, MarseilleGoogle Scholar
  19. Bulthuis DA, Axelrad DM and Mickelson MJ (1992) Growth of the seagrass Heterozostera tasmanica limited by nitrogen in Port Phillip Bay, Australia. Mar Ecol Prog Ser 89: 269–275Google Scholar
  20. Bulthuis DA and Woelkerling WJ (1981) Effects of in situ nitrogen and phosphorus enrichment of the sediments on the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western port, Victoria, Australia. J Exp Mar Biol Ecol 53: 193–207Google Scholar
  21. Burkholder JM, Glasgow HB Jr and Cooke JE (1994) Comparative effects of water-column nitrate enrichment on eelgrass Halodule wrightii, and widgeongrass Ruppia maritima. Mar Ecol Prog Ser 105: 121–138Google Scholar
  22. Burkholder JM, Mason KM and Glasgow HBJ (1992) Watercolumn nitrate enrichment promotes decline of eelgrass Zostera marina: Evidence from seasonal mesocosm experiments. Mar Ecol Prog Ser 81: 163–178Google Scholar
  23. Caffrey JM and Kemp WM (1990) Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Mar Ecol Prog Ser 66: 147–160Google Scholar
  24. Cambridge ML and Hocking PJ (1997) Annual primary production and nutrients dynamics of the seagrasses Posidonia sinuosa and Posidonia australis in south-western Australia. Aquat Bot 59: 277–295Google Scholar
  25. Cambridge ML and McComb J (1984) The loss of seagrases in Cockburn Sound, western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development. Aquat Bot 20: 229–234Google Scholar
  26. Capone DG (1982) Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass Zostera marina. Mar Ecol Prog Ser 10: 67–75Google Scholar
  27. Capone DG and Taylor BF (1980) N2 fixation in the rhizosphere of Thalassia testudinum. Can J Microbiol 26: 998–1005PubMedGoogle Scholar
  28. Cebrián J and Duarte CM (1998) Patterns in leaf herbivory on seagrasses. Aquat Bot 60: 67–82Google Scholar
  29. Ceccherelli G and Cinelli F (1997) Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. J Exp Mar Biol Ecol 217: 165–177Google Scholar
  30. Ceccherelli G and Sechi N (2002) Nutrient availability in the sediment and the reciprocal effects between the native seagrass Cymodocea nodosa and the introduced rhizophytic alga Caulerpa taxifolia. Hydrobiologia 474: 57–66Google Scholar
  31. Chambers RM, Fourqurean JW, Mako SA and Hoppenot R (2001) Biogeochemical effects of iron availability on primary producers in a shallow carbonate marine environment. Limnol Oceanogr 46: 1278–1286Google Scholar
  32. Chapin FS III and Kedrowski RA (1983) Seasonal change in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64: 373–391Google Scholar
  33. Chapman ARO and Craigie JS (1977) Seasonal growth in Laminaria longicruris: Relations with dissolved inorganic nutrients. Mar Biol 40: 197–205Google Scholar
  34. Coleman VL and Burkholder JM (1995) Response of microalgal epiphyte communities to nitrate enrichment in an eelgrass (Zostera marina) meadow. J Phycology 31: 36–43Google Scholar
  35. Danovaro R (1996) Detritus–Bacteria–Meiofauna interactions in seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar Biol 127: 1–13Google Scholar
  36. Danovaro R, Manini E and Fabiano M (2002) Exoenzymatic activity and organic matter composition in sediments of the northern Adriatic Sea: Response to a river plume. Microb Ecol 44: 235–251PubMedGoogle Scholar
  37. Delgado O, Ruiz J, Pérez M, Romero J and Ballesteros E (1999) Effects of fish farming on seagrass (Posidonia Oceanica) in a Mediterranean bay: Seagrass decline after organic loading cessation. Oceanologica Acta 22: 109–117Google Scholar
  38. Denny M and Wethey D (2001) Physical processes that generate patterns in marine communities. In: Bertness MD, Gaines SM and Hixon ME (eds) Marine Community Ecology, pp 3–37. Sinauer Associates, Sunderland, MassachussetsGoogle Scholar
  39. Derenne S and Largeau C (2001) A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments. Soil Sci 166: 833–847Google Scholar
  40. Doddema H and Howari M (1983) In vivo nitrate reductase activity in the seagrass Halophila stipulacea from the Gulf of Aqaba (Jordan). Bot Mar 26: 307–312Google Scholar
  41. Duarte CM (1990) Seagrass nutrient content. Mar Ecol Prog Ser 67: 201–207Google Scholar
  42. Duarte CM (1991) Allometric scaling of seagrass form and productivity. Mar Ecol Prog Ser 77: 289–300Google Scholar
  43. Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112Google Scholar
  44. Duarte CM and Chiscano CL (1999) Seagrass biomass and production: A reassessment. Aquat Bot 65: 159–174Google Scholar
  45. Duarte CM, Merino M and Gallegos M (1995) Evidence of iron deficiency in seagrasses growing above carbonate sediments. Limnol Oceanogr 40: 1153–1158Google Scholar
  46. Dugdale RC and Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol Oceanogr 12: 196–206Google Scholar
  47. Eppley RW and Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680Google Scholar
  48. Erftemeijer PL and Middleburg JJ (1995) Mass balance constraints on nutrient cycling in tropical seagrass beds. Aquat Bot 50: 21–36Google Scholar
  49. Erftemeijer PLA, Stapel J, Smekens MJE and Drossaert WME (1994) The limited effect of in situ phosphorus and nitrogen additions to seagrass beds on carbonate and terrigenous sediments in south Sulawesi, Indonesia. J Exp Mar Biol Ecol 182: 123–140Google Scholar
  50. Escudero A, Del Arco JM, Sanz IC and Ayala J (1992) Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of differentwoody species. Oecologia 90: 80–87Google Scholar
  51. Eyre BD and Ferguson AJP (2002) Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae and macroalgae-dominated warm-temperate Australian lagoons. Mar Ecol Prog Ser 229: 43–59Google Scholar
  52. Ferrario-Méri S, Thibaud MC, Betsche T, Valadier MH and Foyer C (1997) Modulation of carbon and nitrogen metabolism and of nitrate reductase in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture. Planta 2002: 510–521Google Scholar
  53. Fourqurean JW, Powell GVN, Kenworthy J and Zieman JC (1995) The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 70: 349–358Google Scholar
  54. Fourqurean JW, Zieman JC and Powell GVN (1992) Phosphorus limitation of primary production in Florida Bay: Evidence from C: N: P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr 37: 162–171Google Scholar
  55. Fresi E and Saggiomo V (1980) Phosphorus uptake and transfer in Posidonia oceanica (L.) Delile. Rapports Comm Int Mer Mediterranée 27: 178–188Google Scholar
  56. Gacia E, Duarte CM and Middelburg JJ (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47: 23–32Google Scholar
  57. Gambi MC, Nowell ARM and Jumars PA (1990) Flume observations on flow dynamics inZostera marina (eelgrass) beds. Mar Ecol Prog Ser 61: 159–169Google Scholar
  58. Gleeson SK (1993) Optimization of tissue nitrogen and root—shoot allocation. Ann Bot 71: 23–31Google Scholar
  59. Gras AF, Koch MS and Madden CJ (2003) Phosphorus uptake kinetics of a dominant tropical seagrass Thalassia testudinum. Aquat Bot 76: 299–315Google Scholar
  60. Grossman A and Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Physiol Plant Mol Biol 52: 163–210PubMedGoogle Scholar
  61. Grutters M, van Raaphorst W, Epping E, Helder W, de Leeuw JV, Glavin DP and Bada J (2002) Preservation of amino acids from in situ-produced bacterial cell wall peptidoglycans in northeastern Atlantic continental margin sediments. Limnol Oceanogr 47: 1521–1524Google Scholar
  62. Harlin MM, Thorne-Miller B and Boothroyd JC (1982) Seagrasssediment dynamics of a flood-tidal delta in Rhode Island (U. S. A.). Aquat Bot 14: 127–138Google Scholar
  63. Harrison PG (1989) Detrital processing in seagrass systems: A review of factors affecting decay rates, remineralization and detritivory. Aquat Bot 35: 263–288Google Scholar
  64. Heck KL, Pennock JR, Valentine JF, Coen LD and Sklenar SA (2000) Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment. Limnol Oceanogr 45: 1041–1057Google Scholar
  65. Hemminga M and Duarte CM (2000) Seagrass Ecology. Cambridge University Press, CambridgeGoogle Scholar
  66. Hemminga MA, Harrison PG and van Lent F (1991) The balance of nutrient losses and gains in seagrass meadows. Mar Ecol Prog Ser 71: 85–96Google Scholar
  67. Hemminga MA, Marbá N, and Stapel J (1999) Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquat Bot 65: 141–158Google Scholar
  68. Henrichs SM (1993) Early diagenesis of organic matter: The dynamics (rates) of cycling of organic compounds. In: Engel MH and Macko SA (eds) Organic Geochemistry, pp 101–117. Plenum Press, New YorkGoogle Scholar
  69. Herben T and Suzuki J (2001) A simulation study of the effects of architectural constrains and resource translocation on population structure and competition in clonal plants. Evol Ecol 15: 403–423Google Scholar
  70. Hernández I (1992) Aportaciones metodológicas al conocimiento funcional y significado ecofisiológico de la actividad fosfatasa alcalina en macrófitos marinos. PhD Thesis. University of Malaga.Google Scholar
  71. Holmer M, Duarte CM and Marbá N (2003) Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66: 223–239Google Scholar
  72. Holmer M and Olsen AB (2002) Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Mar Ecol Prog Ser 230: 87–101Google Scholar
  73. Huppe HC and Turpin DH (1994) Interaction of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45: 577–607Google Scholar
  74. Iizumi H and Hattori A (1982) Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat Bot 12: 245–256Google Scholar
  75. Invers O, Pérez M and Romero J (1995) Alkaline phosphatase activity as a tool for assessing nutritional conditions in the seagrass Posidonia oceanica (L.) Delile. Sci Marina 59: 41–47Google Scholar
  76. Invers O, Pérez M and Romero J (2002) Seasonal nitrogen speciation in temperate seagrass Posidonia oceanica (L.) Delile. J Exp Mar Biol Ecol 273: 219–240Google Scholar
  77. Invers O, Pérez M and Romero J (2004) Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J Exp Mar Biol Ecol 303: 97–114Google Scholar
  78. James PL and Larkum AWD (1996) Photosynthetic inorganic carbon acquisition of Posidonia australis. Aquat Bot 55: 149–157Google Scholar
  79. Jensen HS, Mcglathery KJ, Marino R and Howarth RW (1998) Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol Oceanogr 43: 799–810Google Scholar
  80. Kaldy JE and Dunton KH (2000) Above-and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Mar Ecol Prog Ser 193: 271–283Google Scholar
  81. Kenworthy WJ and Thayer GW (1984) Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia testudinum, intemperate and subtropical marine ecosystems. Bull Mar Sci 35: 364–379Google Scholar
  82. Kim DH, Matsuda O and Yamamoto T (1997) Nitrification, denitrification, and nitrate reduction rates in the sediment of Hiroshima Bay, Japan. J Oceanogr 53: 317–324Google Scholar
  83. Kitting CL, Fry B and Morgan MD (1984) Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia (Berlin) 62: 145–149Google Scholar
  84. Koch EW (1994) Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa. Mar Biol 118: 767–776Google Scholar
  85. Koch EW, Benz RE and Rudnick DT (2001) Solid-phase phosphorus pools in highly organic carbonate sediments of Northeastern Florida Bay. Est Coast Shelf Sci 52: 279–291Google Scholar
  86. Koch EW and Madden CJ (2001) Patterns of primary production and nutrient availability in a Bahamas lagoon with fringing mangroves. Mar Ecol Prog Ser 219: 109–119Google Scholar
  87. Koike I, Mukai H and Nojima S (1987) The role of the seaurchin Tripneustes gratilla (Linneaeus) in decomposition and nutrient cycling in a tropical seagrass bed. Ecol Res 2: 19–30Google Scholar
  88. Kraemer GP and Alberte RS (1993) Age-related patterns of metabolism and biomass in subterranean tissues of Zostera marina (eelgrass). Mar Ecol Prog Ser 95: 193–203Google Scholar
  89. Kraemer GP and Hanisak MD (2000) Physiological and growth responses of Thalassia testudinum to environmentallyrelevant periods of low irradiance. Aquat Bot 67: 287–300Google Scholar
  90. Kraemer GP and Mazzella L (1999) Nitrogen acquisition, storage, and use by the co-occuring Mediterranean seagrasses Cymodocea nodosa and Zostera noltii. Mar Ecol Prog Ser 183: 95–103Google Scholar
  91. Kraemer GP, Mazzella L and Alberte RS (1997) Nitrogen assimilation and partitioning in the Mediterranean seagrass Posidonia oceanica. PSZNI Mar Ecol 18: 175–788Google Scholar
  92. Kristensen E (1994) Decomposition of macroalgae, vascular plants and sediment detritus in seawater: Use of stepwise thermogravimetry. Biogeochemistry 26: 1–24Google Scholar
  93. Kuo J (1993) Root anatomy and rhizosphere ultrastructure in tropical seagrasses. Aust J Mar Freshwater Res 44: 75–84Google Scholar
  94. Kuo J and Stewart JG (1995) Leaf anatomy and ultrastructure of the North American marine angiospermPhyllospadix (Zosteraceae). Can J Bot 73: 827–842Google Scholar
  95. Lapointe BE and Duke CS (1984) Biochemical strategies for growth of Gracilaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. J Phycology 20: 488–495Google Scholar
  96. Lara C, Romero JM and Guerrero MG (1987) Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J Bacteriol 169: 4376–4378PubMedGoogle Scholar
  97. Lee KS and Dunton KH (1999a) Influence of sediment nitrogenavailability on carbon and nitrogen dynamics in the seagrass Thalassia testudinum. Mar Biol 134: 217–226Google Scholar
  98. Lee KS and Dunton KH (1999b) Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: Development of a wholeplant nitrogen budget. Limnol Oceanogr 44: 1204–1215Google Scholar
  99. Lee KS and Dunton KH (2000) Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 196: 39–48Google Scholar
  100. Lemmens JWTJ, Clapin G, Lavery P and Cary J (1996) Filtering capacity of seagrass meadows and others habitats of Cockburn Sound, Western Australia. Mar Ecol Prog Ser 143: 187–200Google Scholar
  101. Lepoint G, Defawe O, Gobert S, Dauby P and Bouquegneau JM (2002a) Experimental evidence for N recycling in the leaves of the seagrass Posidonia oceanica. J Sea Res 48: 173–179Google Scholar
  102. Lepoint G, Millet S, Dauby P, Gobert S and Bouquegneau JM (2002b) Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar Ecol Prog Ser 237: 87–96Google Scholar
  103. Lipkin Y (1979) Quantitative aspects of seagrass communities, particularly of those dominated by Halophila stipulacea, in Sinai (Northern Red Sea). Aquat Bot 7: 119–128Google Scholar
  104. López NI, Duarte CM, Vallespinós F, Romero J and Alcoverro T (1995) Bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 187: 39–49Google Scholar
  105. López NI, Duarte CM, Vallespinós F, Romero J and Alcoverro T (1998) The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 224: 155–166Google Scholar
  106. Marbá N, Hemmiga MA, Mateo MA, Duarte CM, Mass YEM, Terrados J and Gacia E (2002) Carbon and nitrogen translocation between seagrass ramets. Mar Ecol Prog Ser 226: 287–300Google Scholar
  107. Marschner H, KirkbyEAand Cakmakl I (1996) Effect of mineral nutritional status on shoot–root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47: 1255–1263Google Scholar
  108. Marschner H, Kirkby EA and Engels C (1997) Importance of cycling and recycling of mineral nutrients within plants for growth and development. Bot Acta 110: 265–273Google Scholar
  109. Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindley S, Watson AJ, Van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero FJ, Lee K, YaoW, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P and Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371(6493): 123–129Google Scholar
  110. Martins ARO and Bandeira SO (2001) Biomass distribution and leaf nutrient concentration and resorption of Thalassia hemprichii at Inhaca Island, Mozambique. S Afr J Bot 67: 443–449Google Scholar
  111. Mateo MA and Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: Elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151: 43–53Google Scholar
  112. Mateo MA, Romero J, Pérez M, Littler M and Littler D (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Est Coast Shelf Sci 44: 103–110Google Scholar
  113. McGlathery KJ (1995) Nutrient and grazing influences on a subtropical seagrass community. Mar Ecol Prog Ser 122: 239–252Google Scholar
  114. McGlathery KJ, Risgaard-Petersen N and Cristensen PB (1998) Temporal and spatial variation in nitrogen fixation activity in the eelgrass Zostera marina rhizosphere. Mar Ecol Prog Ser 168: 245–258Google Scholar
  115. McMillan C (1980) Flowering under controlled conditions by Cymodocea serrulata, Halophila stipulacea, Syringodium isoetifolium, Zostera capensis and Thalassia hemprichii from Kenya. Aquat Bot 8: 323–336Google Scholar
  116. McRoy CP and Goering JJ (1974) Nutrient transfer between the seagrass Zostera marina and its epiphytes. Nature 248: 173–174Google Scholar
  117. Mengel K and Kirkby EA (2001) Plant water relationships. In: Mengel K, Kirkby EA, Kosegarten H and Appel T (eds) Principles of Plant Nutrition, pp 181–242. Kluwer Academic Publishers, DordrechtGoogle Scholar
  118. Middelburg JJ, Soetaert K and Herman PMJ (1996) Evaluation of the nitrogen isotope-pairing technique method for measuring benthic denitrification: A simulation analysis. Limnol Oceanogr 41: 1839–1844Google Scholar
  119. Miyajima T, Koike I, Yamano H and Iizumi H (1998) Accumulation and transport of seagrass-derived organic matter in reef flat sediment of Green Island, Great Barrier Reef. Mar Ecol Prog Ser 175: 251–259Google Scholar
  120. Miyajima T, Suzumura M, Umezawa Y and Koike I (2001) Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. Mar Ecol Prog Ser 217: 273–286Google Scholar
  121. Moore KA and Wetzel RL (2000) Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems. J Exp Mar Biol Ecol 244: 1–28Google Scholar
  122. Morell JM and Corredo JE (1993) Sediment nitrogen trapping in a mangrove lagoon. Est Coast Shelf Sci 37: 203–212Google Scholar
  123. Moriarty DJW and O'Donohue MJ (1993) Nitrogen fixation in seagrass communities during summer in Gulf of Carpentaria, Australia. Aust J Mar Freshwater Res 44: 117–125Google Scholar
  124. Muchhal-Umesh S and Raghothama KG (1999) Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA 96: 5868–5872Google Scholar
  125. Muramatsu Y, Harada A, Ohwaki Y, Kasahara Y, Takagi S and Fukuhara T (2002) Salt tolerant ATPase activity in the plasma membrane of the marine angiosperm Zostera marina L. Plant Cell Physiol 43: 1137–1145PubMedGoogle Scholar
  126. Murray DR and Larkum AWD (1991) Seed proteins of the seagrass Zostera capricorni. Aquat Bot 40: 101–108Google Scholar
  127. Murray L, Dennison WC and Kemp WM (1992) Nitrogen versus phosphorus limitation for growth of an estuarine population of eelgrass (Zostera marina). Aquat Bot 44: 83–100Google Scholar
  128. Neckles HA, Wetzel RL and Orth RJ (1993) Relative effects of nutrient enrichment and grazing on epiphytes—macrophyte (Zostera marina L.) dynamics. Oecologia 93: 285–295Google Scholar
  129. Nelson TA and Waaland JR (1997) Seasonality of eelgrass, epiphyte, and grazer biomass and productivity in subtidal eelgrass meadows subjected to moderate tidal amplitude. Aquat Bot 56: 51–74Google Scholar
  130. O'Donohue MJ, Moriarty DJW and McRae IC (1991) Nitrogen fixation in sediments and the rhizosphere of the seagrass Zostera capricorni. Microb Ecol 22: 53–64Google Scholar
  131. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331Google Scholar
  132. Orth RJ (1977) Effect of nutrient enrichment on growth of the eelgrass Zostera marina in the Chesapeake Bay, Virginia, USA. Mar Biol 44: 187–194Google Scholar
  133. Orth RJ and Moore KA (1983) Chesapeake Bay: An unprecedent decline in submerged aquatic vegetation. Science 222: 51–53Google Scholar
  134. Ourry A, Gordon AJ and Macduff JH (1997) Nitrogen uptake and assimilation in roots and root nodules. In: Foyer CH and Quick WP (eds) A Molecular Approach to Primary Metabolism in Higher Plants, pp 237–253. Taylor & Francis, BristolGoogle Scholar
  135. Pedersen MF and Borum J (1992) Nitrogen dynamics of eelgrass Zostera marina during a late summer period of high growth and low nutrient availability. Mar Ecol Prog Ser 80: 65–73Google Scholar
  136. Pedersen MF and Borum J (1993) An annual nitrogen budget for a seagrass Zostera marina population. Mar Ecol Prog Ser 01: 169–177Google Scholar
  137. Pedersen MF, Paling EI and Walker DI (1997) Nitrogen uptake and allocation in the seagrass Amphibolis antartica. Aquat Bot 56: 105–117Google Scholar
  138. Peduzzi P and Herndl GJ (1991) Decomposition of seagrass leaf litter Cymodocea nodosa for the microbial food web in coastal waters of Trieste northern Adriatic Sea. Mar Ecol Prog Ser 71: 163–174Google Scholar
  139. Pellikaan JC and Nienhuis PH (1988) Nutrient uptake and release during growth and decomposition of eelgrassZostera marina L. and its effects on the nutrient dynamics of Lake Grevelingen. Aquat Bot 30: 189–214Google Scholar
  140. Penhale PA and Thayer GW (1980) Uptake and transfer of carbon and phosphorus by eelgrass (Zostera marina L.) and its epiphytes. J Exp Mar Biol Ecol 42: 113–123Google Scholar
  141. Pérez M, Duarte CM, Romero J, Sand-Jensen K and Alcoverro T (1994) Growth plasticity in Cymodocea nodosa stands: The importance of nutrient supply. Aquat Bot 47: 249–264Google Scholar
  142. Pérez M, Mateo MA, Alcoverro T and Romero J (2001) Variability in detritus stocks in beds of the seagrass Cymodocea nodosa. Bot Mar 44: 523–531Google Scholar
  143. Pérez M and Romero J (1993) Preliminary data on alkaline phosphatase activity associated with Mediterranean seagrasses. Bot Mar 36: 499–502Google Scholar
  144. Pérez M, Romero J, Duarte C and Sand-Jensen K (1991) Phosphorus limitation of Cymodocea nodosa growth. Mar Biol 109: 129–133Google Scholar
  145. Pérez-Lloréns JL (1991) Estimaciones de biomasa y contenido interno de nutrientes, ecofisiología de la incorporación de carbono y fósforo en Zostera noltii Hornem. PhD Thesis. University of Malaga.Google Scholar
  146. Pérez-Lloréns JL, de Visscher P, Nienhuis PH and Niell FX (1993) Light-dependent uptake, translocation and foliar release of phosphorus by the intertidal seagrass Zostera noltii Hornem. J Exp Mar Biol Ecol 166: 165–174Google Scholar
  147. Pérez-Lloréns JL and Niell FX (1995) Short-term phosphate uptake kinetics in Zostera noltii Hornem: A comparison between excised leaves and sediment-rooted plants. Hydrobiologia 297: 17–27Google Scholar
  148. Pergent G, Romero J, Pergent-Martini C, Mateo MA and Boudouresque CF (1994) Primary production, stocks and fluxes in the Mediterranean seagrass. Posidonia oceanica. Mar Ecol Prog Ser 106: 139–146Google Scholar
  149. Pirc H and Wollenweber B (1988) Seasonal changes in nitrogen, free amino acids, and C/N ratio in Mediterranean seagrasses. PSZNI Mar Ecol 9: 167–179Google Scholar
  150. Powell GVN, Kenworthy WJ and Fourqurean JW (1989) Experimental evidence for nutrient limitation of seagrass growth in tropical estuary with restricted circulation. Bull Mar Sci 44: 324–340Google Scholar
  151. Prange JA and Dennison WC (2000) Physiological responses of five seagrass species to trace metals. Mar Pollut Bull 41: 327–336Google Scholar
  152. Preen A (1995) Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. Mar Ecol Prog Ser 124: 201–213Google Scholar
  153. Pregnall AM, Smith RD and Alberte RS (1987) Glutamine synthetase activity and free amino acid pools of eelgrass (Zostera marina L.) roots anoxia. J Exp Mar Biol Ecol 106: 211–228Google Scholar
  154. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665–693PubMedGoogle Scholar
  155. Reich PB, Ellsworth DS and Uhl C (1995) Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Funct Ecol 9: 65–76Google Scholar
  156. Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K and Nielsen LP (1998) Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser 174: 281–291Google Scholar
  157. Romero J (1989) Seasonal pattern of Posidonia oceanica production: Growth, age and renewal of leaves. In: Boudouresque CF, Meinesz A, Fresi E and Gravez V (eds) InternationalWorkshop on Posidonia Beds, pp 63–68. GIS Posidonie 2, Marseille.Google Scholar
  158. Romero J, Pérez M, Alcoverro T, Mateo MA and Sánchez-Lizaso JL (1998) Production ecology of Posidonia oceanica (L.) Delile meadows in Nueva Tabarca Marine Reserve: Growth, biomass and nutrient stocks along a bathymetric gradient. Oecol Aquat 11: 113–123Google Scholar
  159. Romero J, Pérez M, Mateo MA and Sala E (1994) The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat Bot 47: 13–19Google Scholar
  160. Romero J, Pergent G, Pergent-Martini C, Mateo MA and Regnier C (1992) The detritic compartment in a Posidonia oceanica meadow: Litter features, decomposition rates and mineral stocks. PSZNI Mar Ecol 13: 69–83Google Scholar
  161. Roth NC and Pregnall AM (1988) Nitrate reductase activity in Zostera marina. Mar Biol 99: 457–463Google Scholar
  162. Ruiz J, Pérez M and Romero J (2001) Effects of fish farm loading on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Mar Pollut Bull 42: 749–760PubMedGoogle Scholar
  163. Rysgaard S, Risgaard-Petersen N and Sloth NP (1996) Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in southern France. Hydrobiologia 329: 133–141Google Scholar
  164. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol Oceanogr 33: 702–724Google Scholar
  165. Shepherd SA and Sprigg RC (1976) Substrate, sediments and subtidal ecology of Gulf St. Vincent and Investigator Strait. Depart Agric Fish 5: 161–174Google Scholar
  166. Shieh WY and Yang JT (1997) Denitrification in the rhizosphere of the two seagrasses Thalassia hemprichii (Ehrenb.) Aschers and Halodule uninervis (Forsk.) Aschers. J Exp Mar Biol Ecol 218: 229–241Google Scholar
  167. Short FT (1987) Effects of sediment nutrients on seagrasses: Literature review and mesocosm experiment. Aquat Bot 27: 41–57Google Scholar
  168. Short FT, Dennison WC and Capone DG (1990) Phosphoruslimited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar Ecol Prog Ser 62: 169–174Google Scholar
  169. Short FT and McRoy CP (1984) Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Bot Mar 17: 547–555Google Scholar
  170. Stapel J, Aarts TL, van Duynhoven BHM, De Groot JD, van den Hoogen PHW and Hemminga MA (1996) Nutrient uptake by leaves and roots and the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar Ecol Prog Ser 134: 195–206Google Scholar
  171. Stapel J and Hemminga MA (1997) Nutrient resorption of seagrass leaves. Mar Biol 128: 197–206Google Scholar
  172. Stapel J, Hemminga MA, Bogert CG and Maas YEM (2001) Nitrogen δ15N retention in small Thalassia hemprichii seagrass plots in an offshore meadow in South Sulawesi, Indonesia. Limnol Oceanogr 46: 24–37Google Scholar
  173. Steudle E and Peterson CA (1998) How does water get through roots? J Exp Bot 49: 775–788Google Scholar
  174. Stevens CL and Hurd CL (1997) Boundary-layers around bladed aquatic macrophytes. Hydrobiologia 346: 119–128Google Scholar
  175. Terrados J, Agawin NSR, Duarte CM, Fortes MD, Kamp-Nielsen L and Borum J (1999) Nutrient limitation of the tropical seagrass Enhalus acoroides (L.) Royle in Cape Bolinao, NW Philippines. Aquat Bot 65: 123–139Google Scholar
  176. Terrados J, Duarte CM and Kenworthy WJ (1997a) Experimental evidence for apical dominance in the seagrass Cymodocea nodosa. Mar Ecol Prog Ser 148: 263–268Google Scholar
  177. Terrados J, Duarte CM and Kenworthy WJ (1997b) Is the apical growth of Cymodocea nodosa dependent on clonal integration? Mar Ecol Prog Ser 158: 103–110Google Scholar
  178. Terrados J and Williams SL (1997) Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Mar Ecol Prog Ser 149: 267–277Google Scholar
  179. Thacker A and Syrett PJ (1972) The assimilation of nitrate and ammoniumbyChamydomonas reinhardi. New Phytologist 71: 423–433Google Scholar
  180. Thayer GW, Engel DW and Bjorndal LKA (1982) Evidence for short circuiting of the detritus cycle of the seagrass beds by the green turtle Chelonia mydas. J Exp Mar Biol Ecol 62: 173–183Google Scholar
  181. Thursby GB and Harlin MM (1982) Leaf-root interaction in the uptake of ammonia by Zostera marina. Mar Biol 72: 109–112Google Scholar
  182. Thursby GB and Harlin MM (1984) Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate. Mar Biol 83: 61–67Google Scholar
  183. Tomasko D and Lapointe BE (1991) Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: Field observations and experimental studies. Mar Ecol Prog Ser 75: 9–17Google Scholar
  184. Tomasko DA and Dawes CJ (1989) Evidence for physiological integration between shaded and unshaded short shoots of Talassia testudinum. Mar Ecol Prog Ser 54: 299–305Google Scholar
  185. Touchette BW (1999) Physiological and developmental responses of eelgrass (Zostera marina) to increases in watercolumn nitrate and temperature. Ph. D. Dissertation. NorthGoogle Scholar
  186. Carolina State University, Raleigh, NC. Touchette BW and Burkholder JM (2000) Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol 250: 133–167Google Scholar
  187. Touchette BW and Burkholder JM (2001) Nitrate reductase activity in a submersed marine angiosperm: Controlling in-fluences of environmental and physiological factors. Plant Physiol Biochem 39: 583–593Google Scholar
  188. Turpin DA (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycology 27: 14–20Google Scholar
  189. Udy JW and Dennison W (1997a) Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. J Exp Mar Biol Ecol 217: 253–277Google Scholar
  190. Udy JW and Dennison WC (1997b) Physiological responses of seagrasses used to identify anthropogenic nutrient inputs. Mar Freshwater Res 48: 605–614Google Scholar
  191. Udy JW, Dennison WC, Lee Long WJ and McKenzie LJ (1999) Responses of seagrass to nutrients in the Great Barrier Reef, Australia. Mar Ecol Prog Ser 185: 257–271Google Scholar
  192. Valentine JF, Fennel Blythe E, Madhavan S and Sherman TD (2004) Effects of simulated herbivory on nitrogen enzyme levels, assimilation and allocation in Thalassia testudinum. Aquat Bot 79: 235–255Google Scholar
  193. Valentine JF and Heck KL (1999) Seagrass herbivory: Evidence for the continued grazing of marine grasses. Mar Ecol Prog Ser 176: 291–302Google Scholar
  194. Valiela I (1995) Marine Ecological Processes, 2nd Ed. Springer, New YorkGoogle Scholar
  195. Valiela I and Cole ML (2002) Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5: 92–102Google Scholar
  196. van Katwijk MM, Vergeer LHT, Schmitz GHW and Roelofs JGM (1997) Ammonium toxicity in eelgrass Zostera marina. Mar Ecol Prog Ser 157: 159–173Google Scholar
  197. Velimirov B (1984) Grazing of Salpa salpa L. on Posidonia oceanica and utilization of soluble compounds. In: Boudouresque CF, Jeudy de Grissac A and Olivier J (eds) International Workshop on Posidonia oceanica Beds, pp 381–387. GIS Posidonie 1, MarseilleGoogle Scholar
  198. Vogt KA, Publicover DA, Bloomfield J, Perez JM, Vogt DJ and Silver WL (1993) Belowground responses as indicators of environmental change. Environ Exp Bot 33: 189–205Google Scholar
  199. Walker DI and McComb AJ (1985) Decomposition of leaves from Amphibolis antarctica (Labill.) Sonder et Aschers. and Posidonia australis Hook. f., the major seagrass species of Shark Bay, Western Australia. Bot Mar 28: 407–413Google Scholar
  200. Ward TJ (1989) The accumulation and effects of metals in seagrass habitats. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses. A Treatise on the Biology of Seagrasses with Special Reference to the Australasian Region, pp 797–816. Elsevier, AmsterdamGoogle Scholar
  201. Welsh DT, Bourgues S, De Wit R and Herbert RA (1996) Seasonal variations in nitrogen-fixation (acetylene reduction) and sulphate-reduction rates in the rhizosphere of Zostera noltii: Nitrogen fixation by sulphate-reducing bacteria. Mar Biol 125: 619–628Google Scholar
  202. Welsh DT, Castadelli G, Bartoli M, Poli D, Careri M, de-Wit R and Viaroli P (2001) Denitrification in an intertidal seagrass meadow, a comparison of 15N-isotope and acetylene-block techniques: Dissimilatory nitrate reduction to ammonia as a source of N2O. Mar Biol 139: 1029–1036Google Scholar
  203. Welsh DT, Marco B, Nizzoli D, Castaldelli G, Riuo SA and Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity, and inorganic-N and Oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser 208: 65–77Google Scholar
  204. Williams SL (1987) Competition between the seagrasses Thalassia testudinum and Syringodium filiforme in a Caribbean lagoon. Mar Ecol Prog Ser 35: 91–98Google Scholar
  205. Williams SL (1990) Experimental studies of Caribbean seagrass bed development. Ecol Monogr 60: 449–469Google Scholar
  206. Worcester SE (1995) Effects of eelgrass beds on advection and turbulent mixing in low current and low shoot density environments. Mar Ecol Prog Ser 126: 223–232Google Scholar
  207. Worm B and Reusch TBH (2000) Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Mar Ecol Prog Ser 200: 159–166Google Scholar
  208. Yamamuro M, Kayanne H and Yamano H (2003) δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems. Mar Pollut Bull 46: 452–458PubMedGoogle Scholar
  209. Ziegler S and Benner R (1999) Nutrient cycling in the water column of a subtropical seagrass meadow. Mar Ecol Prog Ser 188: 51–62Google Scholar
  210. Zimmerman RC, Smith RD and Alberte RS (1987) Is growth if eelgrass nitrogen limited? A numerical simulation of the effects of light and nitrogen on the growth dynamics of Zostera marina. Mar Ecol Prog Ser 41: 167–176Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Javier Romero
    • 1
  • Kun-Seop Lee
    • 2
  • Marta Pérez
    • 3
  • Miguel A. Mateo
    • 3
  • Teresa Alcoverro
    • 4
  1. 1.Departament d’EcologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of BiologyPusan National UniversityPusanKorea
  3. 3.Departament d’EcologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Centre d’Estudis Avançats de BlanesBlanesSpain

Personalised recommendations