Skip to main content

Seagrass Ecology: New Contributions from a Landscape Perspective

  • Chapter
SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION

Abstract

Landscape ecology is the study of processes occurring across spatially heterogeneous mosaics and the biotic responses to the resulting pattern. Spatial mosaics are made up of structural elements, biotic, and/or abiotic, which produce a set of patches set in a homogeneous matrix. Quantitative analyses of spatial and temporal patterns resulting from patch dynamics form the basis of landscape ecology. A landscape is larger than an individual’s immediately observable area (Allen, 1998) and landscape studies typically address heterogeneity at very large spatial scales relative to the organism or process of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcoverro T and Mariani S (2002) Effects of sea urchin grazing on seagrass (Thalassodendron ciliatum) beds of a Kenyan lagoon. Mar Ecol Prog Ser 226: 255–263

    Google Scholar 

  • Allen TFH (1998) The landscape level is dead: Persuading the family to take it off the respirator. In: Peterson DL and Parker VT (eds) Ecological Scale: Theory and Applications, pp 35–54. Columbia University Press, New York

    Google Scholar 

  • Attrill MJ, Strong JA and Rowden AA (2000) Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23: 114–121

    Article  Google Scholar 

  • Baker WL (1992) The landscape ecology of large disturbances in the design and management of nature reserves. Landscape Ecology 7: 181–194

    Article  Google Scholar 

  • Balestri E, Cinelli F and Lardicci C (2003) Spatial variation in Posidonia oceanica structural, morphological and dynamic features in a northwestern Mediterranean coastal area: a multiscale analysis. Mar Ecol Prog Ser 250: 51–60

    Google Scholar 

  • Barbera-Cebrián C, Sanchez-Jerez P and Ramos-Espla AA (2002) Fragmented seagrass habitats on the Mediterranean coast, and distribution and abundance of mysid assemblages. Mar Biol 141: 405–413

    Article  Google Scholar 

  • Bell JD, Steffe AS and Westoby M (1988) Location of seagrass beds in estuaries. Effects on associated fish and decapods. J Exp Mar Biol Ecol 122: 127–146

    Article  Google Scholar 

  • Bell SS and Hicks GRF (1991) Marine landscapes and faunal recruitment: A field test with seagrasses and copepods. Mar Ecol Prog Ser 73: 61–68

    Google Scholar 

  • Bell SS, Hall MO and Robbins BD (1995) Toward a landscape approach in seagrass beds: Using macroalgal accumulation to address questions of scale. Oecologia 104: 163–168

    Article  Google Scholar 

  • Bell SS and Hall MO (1997) Drift macroalgal abundance in seagrass beds: Investigating large scale associations with physical and biotic attributes. Mar Ecol Prog Ser 147: 277–283

    Google Scholar 

  • Bell SS, Fonseca MS and Motten LB (1997) Linking restoration and landscape ecology. Restor Ecol 5: 318–323

    Article  Google Scholar 

  • Bell SS, Robbins BD and Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosystems 2: 493–504

    Article  Google Scholar 

  • Bell SS, Brooks RA, Robbins BD, Fonseca MS and Hall MO (2001) Faunal response to fragmentation in seagrass habitats: Implications for seagrass conservation. Biol Conserv 100: 115–123

    Article  Google Scholar 

  • Bell SS, Hall MO, Soffian S and Madley KM (2002) Assessing the impact of boat propeller scars on fish and shrimp utilizing seagrass beds. Ecol Appl 12: 206–217

    Article  Google Scholar 

  • Bologna PAX and Heck KL (1999) Differential predation and growth rates of bay scallops within a seagrass habitat. J Exp Mar Biol Ecol 239: 299–314

    Article  Google Scholar 

  • Bologna PAX and Heck KL (2002) Impact of habitat edges on density and secondary production of seagrass-associated fauna. Estuaries 25: 1033–1044

    Article  Google Scholar 

  • Boudouresque CF (1997) Population dynamics of Caulerpa taxifolia in the Mediterranean including the mechanisms of interspecific compeition. Tech Doc 145–162

    Google Scholar 

  • Bowden DA, Rowden AA and Attrill MJ (2001) Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. J Exp Mar Biol Ecol 259: 133–154

    Article  PubMed  Google Scholar 

  • Brooks RA and Bell SS (2001) Mobile corridors in marine landscapes: Enhancement of faunal exchange at seagrass/sand ecotones. J Exp Mar Biol Ecol 264: 67–84

    Article  Google Scholar 

  • Burdick DM, Short FW and Wolf J (1993) An index to assess and monitor the progression of wasting disease in eelgrass Zostera marina. Mar Ecol Prog Ser 94: 83–90

    Google Scholar 

  • Bythell JC, Hillis-Starr ZM and Rogers CS (2000) Local variability but landscape stability in coral reef communities following repeated hurricane impacts. Mar Ecol Prog Ser 204: 93–100

    Google Scholar 

  • Cadenasso ML, Pickett STA,Weathers KC and Jones CG (2003) Aframework for a theory of ecological boundaries. Bioscience 57: 750–758

    Article  Google Scholar 

  • Ceccherelli G, Piazzi L and Cinelli F (2000) Response of the non-indigenous Caulerpa racemosa (Forsskal) J. Agardh to the native seagrass Posidonia oceanica (L.) Delile: Effect of density of shoots and orientation of edges of meadows. J Exp Mar Biol Ecol 243: 227–240

    Article  Google Scholar 

  • Costanza R, Sklar FH and White ML (1990) Modeling coastal landscape dynamics. Bioscience 40: 91–107

    Article  Google Scholar 

  • Cressie NAC (1991) Statistics for Spatial Data. Wiley Inter-Science, New York

    Google Scholar 

  • Dawes CJ, Andorfer J, Rose C, Uranowski C and Ehringer N (1997) Regrowth of the seagrass Thalassia testudinum into propeller scars. Aquat Bot 59: 139–155

    Article  Google Scholar 

  • Dayton PK and Tegner MJ (1984) The importance of scale in community ecology: A kelp forest example with terrestrial analogs. In: Price PW, Slobodchikoff CN and Gaud WS (eds) Novel Approaches to Interactive Systems, pp 457–482. John Wiley, New York

    Google Scholar 

  • De Jonge VN and De Jonge DJ (1992) Role of tide, light and fisheries in the decline of Zostera marina in the DutchWadden Sea. Neth Inst Sea Res Publ Ser 20: 161–176

    Google Scholar 

  • De Villele X and Verlaque M (1995) Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the north western Mediterranean. Botanica Marina 38: 79–87

    Article  Google Scholar 

  • den Hartog C (1970) The Sea-Grasses of the World. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Edwards G and Fortin MA (2001) A cognitive view of spatial uncertainty. In: Hunsaker CT, Goodchild ME, Friedl MA and Case TJ (eds) Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications, pp 133–157. Springer-Verlag, New York

    Google Scholar 

  • Eggleston DB, Etherington LL and Ellis WE (1998) Organism response to habitat patchiness: Species and habitat-dependent recruitment of decapod crustaceans. J Exp Mar Biol Ecol 223: 111–132

    Article  Google Scholar 

  • Entel MB and Hamilton NTM (1999) Model description of dynamics of disturbance and recovery of natural landscapes. Landscape Ecology 14: 277–281

    Article  Google Scholar 

  • Farina A (1998) Principles and Methods in Landscape Ecology. Chapman and Hall, New York

    Google Scholar 

  • Fletcher SW and Fletcher WW (1995) Factors affecting changes in seagrass distribution and diversity patterns in the Indian River Lagoon complex between 1940 and 1992. Bull Mar Sci 57: 49–58

    Google Scholar 

  • Fonseca MS (1996) Scale dependence in the study of seagrass systems. In: Kuo J, Phillips RC, Walker DI and Kirkman H (eds) Seagrass Biology: Proceedings of an InternationalWorkshop, pp 95–104. Rottnest Island, Australia

    Google Scholar 

  • Fonseca MS and Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, U.S.A. Mar Ecol Prog Ser 171: 109–121

    Google Scholar 

  • Fonseca MS, Kenworthy WJ and Courtney FX (1996) Development of planted seagrass beds in Tampa Bay, Florida, U.S.A. II: Faunal Components. Mar Ecol Prog Ser 132: 141–156

    Google Scholar 

  • Fonseca MS, Kenworthy WJ and Thayer GW (1998) Guidelines for the Conservation and Restoration of Seagrasses in the United States and AdjacentWaters. NOAA Coastal Ocean Program, Decision Analysis Series No. 12

    Google Scholar 

  • Fonseca MS, Kenworthy WJ and Whitfield PE (2000) Temporal dynamics of seagrass landscapes: A preliminary comparison of chronic and extreme disturbance events. In: Pergent G, Pergent-Martini C, Buia MC and Gambi MC (eds) Proceedings 4th International Seagrass BiologyWorkshop, September 25–October 2, 2000, pp 373–376. Corsica, France

    Google Scholar 

  • Fonseca MS, Whitfield PE, Kelly NM and Bell SS (2002) Modeling seagrass landscape pattern and associated ecological attributes. Ecol Appl 12(1): 218–237

    Article  Google Scholar 

  • Fonseca MS, Whitfield PE, Kenworthy WJ, Colby DR and Julius BE (2004) Use of two spatially explicit models to determine the effect of injury geometry on natural resource recovery. Aquat Conserv: Mar Freshwater Ecosyst 14: 281–298

    Article  Google Scholar 

  • Fonseca MS, Whitfield PE, Kenworthy WJ, Colby DR and Julius BE (2004) Use of two spatially explicit models to determine the effect of injury geometry on natural resource recovery 2004. Aquatic Conservation Marine and Freshwater Ecosystems 14: 281–298

    Article  Google Scholar 

  • Fortin MJ and Edwards G (2001) Delineation and analysis of vegetation borders. In: Hunsaker CT, Goodchild ME, Friedl MA and Case TJ (eds) Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications, pp 158–174. Springer-Verlag, New York

    Google Scholar 

  • Fortin D, Fryxell JM, O'Brodovich L and Frandsen D (2003) Foraging ecology of bison at the landscape and plant community levels: The applicability of energy maximization principles. Oecologia 134: 219–227

    PubMed  Google Scholar 

  • Frost MT, Rowden AA and Attrill MJ (1999) Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquat Conserv: Mar Freshwater Ecosyst 9: 255–263

    Article  Google Scholar 

  • Gergel SE and Turner MG(eds.) (2002) Learning landscape ecology: a practical guide to concepts and techniques. Springer, New York

    Google Scholar 

  • Goodchild M (1987) Spatial Autocorrelation. Concepts and Techniques in Modern Geography. #47 GeoBooks, UK

    Google Scholar 

  • Grubb PJ (1977) The maintenance of species richness in plant communities: The importance of the regeneration niche. Biol Rev 52: 107–145

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1: 143–156

    Article  Google Scholar 

  • Hammerstrom K and Kenworthy WJ (2003) A new method for estimation of Halophila decipiens Ostenfeld seed banks using density separation. Aquat Bot 6: 79–86

    Article  Google Scholar 

  • Hargis CD, Bissonette JA and David JL (1998) The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecology 13: 167–186

    Article  Google Scholar 

  • Harwell MC and Orth RJ (2001) Influence of a tube-dwelling polychaete on the dispersal of fragmented reproductive shoots of eelgrass. Aquat Bot 70: 1–7

    Article  Google Scholar 

  • Harwell MC and Orth RJ (2002) Long distance dispersal potential in a marine macrophyte. Ecology 83: 3319–3330

    Article  Google Scholar 

  • Hemminga MA and Duarte CM (2000) Seagrass Ecology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Holmquist JG (1992) Disturbance, dispersal, and patch insularity in a marine benthic assemblage: Influence of mobile habitat on seagrasses and associated fauna. PhD Dissertation. Florida State University

    Google Scholar 

  • Holmquist JG (1997) Disturbance and gap formation in a marine benthic mosaic: Influence of shifting macroalgal patches on seagrass structure and mobile invertebrates. Mar Ecol Prog Ser 158: 121–130

    Google Scholar 

  • Hovel KA and Lipcius RN (2001) Habitat fragmentation in a seagrass landscape: Patch size and complexity control blue crab survival. Ecology 82: 1814–1829

    Article  Google Scholar 

  • Hovel KA, Fonseca MS,Meyer DL,KenworthyWJand Whitfield PE (2002) Effects of seagrass landscape structure, structural complexity, and hydrodynamic regime on macrofaunal densities in North Carolina seagrass beds. Mar Ecol Prog Ser 243: 11–24

    Google Scholar 

  • Hunsaker CT, Goodchild ME, Friedl MA and Case TJ (eds) (2001) Spatial Uncertainty in Ecology. Springer-Verlag, New York

    Google Scholar 

  • Inglis GI (2000) Disturbance related heterogeneity in the seed banks of a marine angiosperm. J Ecol 88: 88–99

    Article  Google Scholar 

  • Irlandi EA (1994) Large-and small-scale effects of habitat structure on rates of predation: How percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve. Oecologia 98: 176–183

    Article  Google Scholar 

  • Irlandi EA (1996) The effects of seagrass patch size and energy regime on growth of a suspension-feeding bivalve. J Mar Res 54: 161–185

    Article  Google Scholar 

  • Irlandi EA, Ambrose WG and Orlando BA (1995) Landscape ecology and the marine environment: How spatial configuration of seagrass habitat influences growth and survival of the bay scallop. Oikos 72: 307–313

    Article  Google Scholar 

  • Irlandi EA and Crawford MK (1997) Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal communities on abundance, movement, and growth of an estuarine fish. Oecologia 110: 222–230

    Article  Google Scholar 

  • Jensen S and Bell SS (2001) Seagrass growth and patch dynamics: Cross-scale morphological plasticity. Plant Ecol 155: 201–217

    Article  Google Scholar 

  • Jousson O, Pawlowski J, Zaninetti L, Zechman FW, Dini F, Di Guiseppe G, Woodfield R, Millar A and Meinesz A (2000) Invasive alga reaches California. Nature 408: 157–158

    Article  PubMed  CAS  Google Scholar 

  • Kelly NM, Fonseca M and Whitfield P (2001) Predictive mapping for management and conservation of seagrass beds in North Carolina. Aquat Conserv: Mar Freshwater Ecosyst 11: 437–451

    Article  Google Scholar 

  • Kendrick GA, Eckersley J and Walker DI (1999) Landscapescale changes in seagrass distribution over time: A case study from Success Bank, Western Australia. Aquat Bot 65: 293–309

    Article  Google Scholar 

  • Kirkman H and Kirkman J (2000) Long-term seagrass monitoring near Perth, Western Australia. Aquat Bot 67: 319–332

    Article  Google Scholar 

  • Kurdziel JP and Bell SS (1992) Emergence and dispersal of phytal-dwelling meiobenthic copepods. J Exp Mar Biol Ecol 163: 43–64

    Article  Google Scholar 

  • Lee SY, Fong CW and Wu RSS (2001) The effects of seagrass (Zostera japonica) canopy structure on associated fauna: A study using artificial seagrass units and sampling of natural beds. J Exp Mar Biol Ecol 259: 23–50

    Article  PubMed  Google Scholar 

  • Lefebvre LW, Reid JP,KenworthyWJand Powell JA (1999) Characterizing manatee habitat use and seagrass grazing in Florida and Puerto Rico: Implications for conservation and management. Pacific Conservation Biology 5: 289–298

    Google Scholar 

  • Lemee R, Boudouresque CF, Gobert J, Malestroit P, Mari X, Meinesz A, Manger V and Ruitton S (1996) Feeding behavior of Paracentrotus lividus in presence of Caulerpa taxifolia introduced into the Mediterranean. Oceanologica Acta 19: 245–253

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73: 1943–1967

    Article  Google Scholar 

  • MacArthur LD and Hyndes GA (2001) Differential use of seagrass assemblages by a suite of Odacid species. Est Coast Shelf Sci 52: 79–90

    Article  Google Scholar 

  • McNeill SE and Fairweather PG (1993) Single large or several small marine reserves? An experimental approach on seagrass fauna. J Biogeography 20: 428–440

    Article  Google Scholar 

  • Marbà N and Duarte CM (1995) Coupling of seagrass (Cymodocea nodosa) patch dynamics to subaqueous dune migration. J Ecol 83: 381–389

    Article  Google Scholar 

  • Marbà N and Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Marine Ecology Progress Series 174: 269–280

    Google Scholar 

  • Marbà N, Cebrián J, Enriques S and Duarte CM (1994) Migration of large-scale sub-aqueous bed forms measured with seagrasses (Cymodocea nodosa) as tracers. Limnol Oceanogr 39: 126–133

    Article  Google Scholar 

  • Masini RJ, Anderson PK and McComb AJ (2001) A Halodule-dominated community in a subtropical embayment: Physical environment, productivity, biomass and impact of dugong grazing. Aquat Bot 71: 179–197

    Article  Google Scholar 

  • Meinesz A and Hesse B (1991) Introduction of the tropical alga Caulerpa taxifolia and its invasion of the northwest Mediterranean. Oceanologica Acta 14: 415–426

    Google Scholar 

  • Micheli F and Peterson CH (1999) Estuarine vegetated habitats as corridors for predator movements. Conserv Biol 13: 869–881

    Article  Google Scholar 

  • Mills KE and Fonseca MS (2003) Mortality and productivity of eelgrass Zostera marina under conditions of experimental burial with two sediment types. Mar Ecol Prog Ser 255: 127–134

    Google Scholar 

  • Muehlstein LK, Porter D and Short FT (1988) Labyrinthula sp. a marine slime mold producing the symptoms ofwasting disease in eelgrass Zostera marina. Mar Biol 99: 465–472

    Article  Google Scholar 

  • Muehlstein LK, Porter D and Short FT (1991) Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia 83: 180

    Article  Google Scholar 

  • Nakaoka M (2001) Small-scale variation in a benthic community at an intertidal flat in Thailand: Effects of spatial heterogeneity of seagrass vegetation. Benthos Res 56: 63–71

    Google Scholar 

  • Nakaoka M and Aioi K (1999) Growth of seagrass Halophila ovalis at dugong trails compared to existing within-patch variation in a Thailand intertidal flat. Mar Ecol Prog Ser 184: 97–103

    Google Scholar 

  • Nakaoka M and Toyohara T (2000) Effects of seagrass patch structure on the mobile epifaunal community in a subtidal seagrass meadow in Thailand. Benthos Res 55(2): 53–61

    Google Scholar 

  • Nelson TA and Lee A (2001)Amanipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquat Bot 71: 149–154

    Article  Google Scholar 

  • Olesen B and Sand-Jensen K (1994) Patch dynamics of eelgrass Zostera marina. Mar Ecol Prog Ser 106: 147–156

    Google Scholar 

  • Orth RJ and Moore KA (1983) Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation. Science 222: 51–53

    Article  PubMed  CAS  Google Scholar 

  • Orth RJ, Luckenbach M and Moore KA (1994) Seed dispersal in a marine macrophyte: Implications for colonization and restoration. Ecology 75: 1927–1939

    Article  Google Scholar 

  • Orth RJ, Harwell MC, Bailey EM, Bartholomew A, Jawad JT, Lombana AV, Moore KA, Rhode JM and Woods HE (2000) A review of issues in seagrass seed dormancy and germination: Implications for conservation and restoration. Mar Ecol Prog Ser 200: 277–288

    Google Scholar 

  • Patriquin DG (1975) “Migration” of blowouts in seagrass beds at Barbados and Carriacou,West Indies, and its ecological and geological implications. Aquat Bot 1: 163–189

    Article  Google Scholar 

  • Pittman SJ (2002) Linking fish and prawns to their environment in shallow water marine landscapes. PhD Thesis. University of Queensland, Australia

    Google Scholar 

  • Pulich WM and White MA (1991) Decline of submerged vegetation in the Galveston Bay system: Chronology and relationships to physical processes. J Coastal Res 7: 1125–1138

    Google Scholar 

  • Ralph PJ and Short FT (2002) Impact of the wasting disease pathogen, Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. Mar Ecol Prog Ser 226: 265–271

    Google Scholar 

  • Ramage DL and Schiel DR (1999) Patch dynamics and response to disturbance of the seagrass Zostera novazelandica on intertidal platforms in southern New Zealand. Mar Ecol Prog Ser 189: 275–288

    Google Scholar 

  • Rasheed MA (1999) Recovery of experimentally created gaps within a tropical Zostera capricorni (Aschers.) seagrass meadow, Queensland Australia. J Exp Mar Biol Ecol 235: 183–200

    Article  Google Scholar 

  • Rizzuto NV (2003) Spatial and temporal patterns of seagrass habitat usage among Caridean macrofauna. MS Thesis. University of South Florida

    Google Scholar 

  • Robbins BD (1997) Quantifying temporal change in seagrass areal coverage: The use of GIS and low resolution aerial photography. Aquat Bot 59: 259–268

    Article  Google Scholar 

  • Robbins BD and Bell SS (1994) Seagrass landscapes: A terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9: 301–304

    Article  Google Scholar 

  • Robbins BD and Bell SS (2000) Dynamics of a subtidal seagrass landscape: Seasonal and annual change in relation to water depth. Ecology 81: 1193–1205

    Article  Google Scholar 

  • Robbins BD, Fonseca MS,Whitfield PE and Clinton P (2001) Use of a wave exposure technique for predicting distribution and ecological characteristics of seagrass ecosystems. In: Greening HS (ed) Proceedings: Seagrass Management: It's Not Just Nutrients, October 6, 2000, pp 171–176. Tampa Bay National Estuary Program, St. Petersburg, FL

    Google Scholar 

  • Robinson GR, Holt RD, Gaines MS, Hamburg SP, Johnson ML, Fitch HS and Martinko EA (1992) Diverse and contrasting effects of habitat fragmentation. Science 257: 524–526

    Article  PubMed  CAS  Google Scholar 

  • Rollon RN, Vermaat JE and Nacorda ME (2003) Sexual reproduction in SE Asian seagrasses: the absence of a seed bank in Thalassia hemprichii. Aquat Bot 75: 181–185

    Article  Google Scholar 

  • Rose CD, Sharp WC, Kenworthy WJ, Hunt JH, Lyons WG, Prager EJ,Valentine JF, HallMO, WhitfieldPEand Fourqurean JW (1999) Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in outer Florida Bay. Mar Ecol Prog Ser 190: 212–222

    Google Scholar 

  • Rossi RE, Mulla DJ, Journel AG and Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62: 277–314

    Article  Google Scholar 

  • Salita JT (2000) The influence of spatial arrangement of seagrasses on fish abundance in Bolinao, northern Phillipines. ZMT-Contributions No. 10

    Google Scholar 

  • Salita JT, Kau WE and Saint-Paul U (2003) The influence of seagrass landscapes on fish abundance in Bolinao northern Philippines. Mar Ecol Prog Ser 247: 183–195

    Google Scholar 

  • Sanchez-Jerez P, Cebrian CB and Espla AAR (1999) Comparison of the epifauna spatial distribution in Posidonia oceanica, Cymodocea nodosa and unvegetated bottoms: Importance of meadow edges. Acta Oecologia 20: 391–405

    Article  Google Scholar 

  • Schneider DC (1994) Quantitative Ecology: Spatial and Temporal Scaling. Academic Press, San Diego, CA

    Google Scholar 

  • Short FT, Mathieson AC and Nelson JI (1986) Recurrence of the eelgrass wasting disease at the border of New Hampshire and Maine, U.S.A. Mar Ecol Prog Ser 29: 88–92

    Google Scholar 

  • Short FT, Ibelings BW and Den Hartog C (1988) Comparison of a current eelgrass wasting disease to the wasting disease in the 1930s. Aquat Bot 30: 295–304

    Article  Google Scholar 

  • Sogard SM and Able KW (1994) Diel variation in immigration of fishes and decapod crustaceans to artificial seagrass habitat. Estuaries 17: 622–630

    Article  Google Scholar 

  • Sousa WP (1985) Disturbance and patch dynamics on rocky intertidal shores. In: Pickett STA and White PS (eds) The Ecology of Natural Disturbance and Patch Dynamics, pp 101–124. Academic Press, New York

    Google Scholar 

  • Stine PA and Hunsaker CT (2001) An introduction to uncertainty issues for spatial data used in ecological applications. In: Hunsaker CT, Goodchild ME, FriedlMAand Case TJ (eds) Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications, pp 91–107. Springer-Verlag, New York

    Google Scholar 

  • Strayer DL, Power ME, Fagan WF, Pickett STA and Belnap J (2003) A classification of ecological boundaries. Bioscience 52: 723–729

    Article  Google Scholar 

  • Tanner JE (2003) Patch shape and orientation influence on seagrass epifauna are mediated by dispersal abilities. Oikos 100: 517–523

    Article  Google Scholar 

  • Townsend EC and Fonseca MS (1998) Bioturbation as a potential mechanism influencing spatial heterogeneity of North Carolina seagrass beds. Mar Ecol Prog Ser 169: 123–132

    Google Scholar 

  • Turner MG (1987) Landscape Heterogeneity and Disturbance. Springer-Verlag, New York

    Google Scholar 

  • Turner MG and Gardner RH (1991) Quantitative Methods in Landscape Ecology. Springer-Verlag, New York

    Google Scholar 

  • Turner SJ, Hewitt JE, Wilkinson MR, Morrisey DJ, Thrush SF, Cummings VJ and Funnell G (1999) Seagrass patches and landscapes: The influence of wind-wave dynamics and heirarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries 22: 1016–1032

    Article  Google Scholar 

  • Uhrin AV and Holmquist JG (2003) Effects of Propeller scarring on macrofaunal use of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 250: 61–70

    Google Scholar 

  • Valentine JF, Heck KL, Harper P and Beck M (1994) Effects of bioturbation in controlling turtlegrass (Thalassia testudinum Banks ex König) abundance: Evidence from field enclosures and observations in the Northern Gulf of Mexico. J Exp Mar Biol Ecol 178: 181–192

    Article  Google Scholar 

  • Vergeer LHT and den Hartog C (1994) Omnipresence of Labyrinthulaceae in seagrasses. Aquat Bot 48: 1–20

    Article  Google Scholar 

  • Vidondo B, Duarte CM, Middelboe AL, Stefansen K, Lützen T and Nielsen SL (1997) Dynamics of a landscape mosaic: Size and age distributions, growth and demography of seagrass Cymodocea nodosa patches. Mar Ecol Prog Ser 158: 131–138

    Google Scholar 

  • Virnstein RW (1995) Seagrass landscape diversity in the Indian River Lagoon, Florida: The importance of geographic scale and pattern. Bull Mar Sci 57: 67–74

    Google Scholar 

  • Wanless HR (1981) Fining upwards sedimentary sequences generated in seagrass beds. J Sedimentary Petrol 51: 445–454

    Google Scholar 

  • Weins JA, Stenseth NC, Van Horne B and Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66: 369–380

    Article  Google Scholar 

  • White PS and Pickett STA (1985) Natural disturbance and patch dynamics: An introduction. In: Pickett STA and White PS (eds) The Ecology of Natural Disturbance and Patch Dynamics, pp 3–13. Academic Press, New York

    Google Scholar 

  • Whitfield PE, Kenworthy WJ, Hammerstrom K and Fonseca MS (2002) The role of storms in the expansion of disturbances initiated by motor vessels in subtropical seagrass banks. J Coastal Res 37: 86–99

    Google Scholar 

  • Williams SL (1990) Experimental studies of Caribbean seagrass bed development. Ecol Monogr 60: 449–469

    Article  Google Scholar 

  • With KA (1994) Using fractal analysis to assess how species perceive landscape structure. Landscape Ecol 9: 25–36

    Article  Google Scholar 

  • With KA. and Crist TO (1995) Critical thresholds in species responses to landscape structure. Ecology 76: 2446–2459

    Article  Google Scholar 

  • Worm B and Reusch TBH (2000) Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Mar Ecol Prog Ser 200: 159–166

    CAS  Google Scholar 

  • Wu J and Hobbs R (2002) Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landscape Ecology 17: 355–365

    Article  Google Scholar 

  • Zajac RN, Lewis RS, Poppe LJ, Twichell DC, Vozarik J and Digiacomo-Cohen ML (2000) Relationships among sea-floor structure and benthic communities in Long Island Sound at regional and benthoscape scales. J Coastal Res 16: 627–640

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bell, S.S., Fonseca, M.S., Stafford, N.B. (2007). Seagrass Ecology: New Contributions from a Landscape Perspective. In: SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_26

Download citation

Publish with us

Policies and ethics