Human Impacts on Seagrasses: Eutrophication, Sedimentation, and Contamination

  • Peter J. Ralph
  • David Tomasko
  • Kenneth Moore
  • Stephanie Seddon
  • Catrionà M. O. Macinnis-Ng


Growth of human populations along coastal environments, as well as poor water management practices have resulted in the complete loss of seagrass meadows (Kemp et al., 1983; Larkum and West, 1990; Short and Wyllie-Echeverria, 1996; Peters et al., 1997). For example, the catastrophic loss of seagrasses clearly illustrated in Fig. 1 is linked to coastal development and associated reduction in water quality.


Submerged Aquatic Vegetation Seagrass Meadow Stormwater Runoff Zostera Marina Seagrass Coverage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abal EG, Loneragan N, Bowen P, Perry CJ, Udy JW and Dennison WC (1994) Physiological and morphological responses of the seagrass Zostera capricorni Aschers. to light. J Exp Mar Biol Ecol 178: 113–129CrossRefGoogle Scholar
  2. Agawin NSR, Duarte CM and Fortes MD (1996) Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines): In situ experimental evidence. Mar Ecol Prog Ser 138: 233–243Google Scholar
  3. Alexander RB, Smith RA, Schwarz GE, Preston SD, Brakebill JW, Srinivasan R and Pacheco PA (2001) Atmospheric nitrogen flux from the watersheds of major estuaries of the United States: An application of the SPARROW watershed model. In: Valigura RA, Alexander RB, Castro MS, Meyers TP, Paerl HW, Stacey PE and Turner RE (eds) Nitrogen Loading in Coastal Water Bodies: An Atmospheric Perspective, pp 119–170. American Geophysical Union, Washington, DCGoogle Scholar
  4. Alutoin S, Boberg J, Nyström M and Tedengren M (2001) Effects of the multiple stressors copper and reduced salinity on the metabolism of the hermatypic coral Porites lutea. Mar Environ Res 52: 289–299PubMedCrossRefGoogle Scholar
  5. Bastyan GR (1986) Distribution of seagrass in Princess Royal Harbour and Oyster Harbour on the Southern coast of Western Australia. Technical Series 1, Department of Conservation and Environment. Perth, Western AustraliaGoogle Scholar
  6. Batley GE (1987) Heavy metal speciation in waters, sediments and biota from Lake Macquarie, NewSouthWales. Aust J Mar Freshwater Res 38: 591–606CrossRefGoogle Scholar
  7. Batley GE (1996) Heavy metals and tributyltin in Australian coastal and estuarine waters. In: Zann LP and Sutton DC (eds) The State of the Marine Environment Report for Australia. Technical Annex: 2. Pollution, pp 63–72. Department of the Environment, Sport and Territories, CanberraGoogle Scholar
  8. Batley GE, Apte SC and Stauber JL (1999) Acceptability of aquatic toxicity data for the derivation of water quality guidelines for metals. Mar Freshwater Res 50: 729–738CrossRefGoogle Scholar
  9. Bester K (2000) Effects of pesticides on seagrass beds. Helgoland Mar Res 54: 95–98CrossRefGoogle Scholar
  10. Borum J (1985) Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar Biol 87: 211–218CrossRefGoogle Scholar
  11. Bourcier M (1986) Evolution, en cinq années, des herbiers à Posidonia oceanica et du macrobenthos circalittoral; action conjuguée des activités humaines et des modifications climatiques. Vie Milieu 36: 1–8Google Scholar
  12. Bowmer KH (1986) Rapid biological assay and limitations in macrophyte ecotoxicology: A review. Aust J Mar Freshwater Res 37: 297–308CrossRefGoogle Scholar
  13. Boynton WR, Garber JH, Summers R and Kemp WM (1995) Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18: 285–314CrossRefGoogle Scholar
  14. Bricker SB, Clement CG, Pirhalla DE, Orlando SP and Farrow DRG (1999) National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation's Estuaries. NOAA, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science. Silver Spring, MDGoogle Scholar
  15. Brun FG, Hernández I, Vergara JJ, Peralta G and Pérez-Lloréns JL (2002) Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Mar Ecol Prog Ser 225: 177–187Google Scholar
  16. Bryars S and Neverauskas V (2001) Natural recolonisation of seagrass at a disused sewage sludge outfall in Gulf St Vincent: Preliminary results of an underwater survey, pp 80–82. In: Seddon S and Murray-Jones S (eds) Proceedings of the Seagrass Restoration Workshop for Gulf St Vincent, 15-16 May 2001, Department for Environment & Heritage and SARDI Aquatic Sciences, AdelaideGoogle Scholar
  17. Bulthuis DA and Woelkerling WJ (1981) Effects of in situ nitrogen and phosphorus enrichment of the sediments on the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia. J Exp Mar Biol Ecol 53: 193–207CrossRefGoogle Scholar
  18. Bulthuis DA, Axelrad DM, Bremner AJ, Coleman N, Holmes NJ, Krebs CT, Marchant JW and Mickelson MJ (1984a) Loss of seagrasses in Western Port progress report No. 1, December 1983–March 1984. Internal Report No. 73. Marine Science Laboratories, Department of Conservation, Forests and Lands, VictoriaGoogle Scholar
  19. Bulthuis DA, Brand GW and Mobley MC (1984b) Suspended sediments and nutrients inwater ebbing from seagrass-covered and denuded tidal mudflats in a southern Australian embayment. Aquat Bot 20: 257–266CrossRefGoogle Scholar
  20. Burke MK, Dennison WC and Moore KA (1996) Non-structural carbohydrate reserves of eelgrass Zostera marina. Mar Ecol Prog Ser 137: 195–201Google Scholar
  21. Burkholder JM, Mason KM and Glasgow HB (1992) Watercolumn nitrate enrichment promotes decline of eelgrass Zostera marina: Evidence from seasonal mesocosm experiments. Mar Ecol Prog Ser 81: 163–178Google Scholar
  22. Burkholder JM, Glasgow HB Jr and Cooke JE (1994) Comparative effects of water-column nitrate enrichment on eelgrass Zostera marina, shoalgrass Halodule wrightii, and widgeongrass Ruppia maritima. Mar Ecol Prog Ser 105: 121–138Google Scholar
  23. Burns KA, Ehrhardt MG, Howes BL and Taylor CD (1993) Subtidal benthic community respiration and photoproduction near the heavily oiled gulf coast of Saudi Arabia. Mar Pollut Bull 27: 199–205CrossRefGoogle Scholar
  24. Cambridge ML and McComb AJ (1984) The loss of seagrass in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development. Aquat Bot 20: 229–243CrossRefGoogle Scholar
  25. Cambridge ML, Chiffings AW, Brittan C, Moore L and McComb AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline. Aquat Bot 24: 269–285CrossRefGoogle Scholar
  26. Carlson PR Jr, Yarbro LA and Barber TR (1994) Relationship of sediment sulfide to mortality of Thalassia testudinum in Florida bay. Bull Mar Sci 53: 733–746Google Scholar
  27. Clarke SM (1987) Seagrass—sediment dynamics in Holdfast Bay: Summary. Safish 11: 4–10Google Scholar
  28. Clarke SM and Kirkman H (1989) Seagrass dynamics. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses. A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region, pp 304–345. Elsevier, The NetherlandsGoogle Scholar
  29. Clijsters H, Cuypers A and Vangronsveld J (1999) Physiological responses to heavy metals in higher plants; defence against oxidative stress. Zietschrift Fur Naturforschung C. Am J Biosci 54: 730–734Google Scholar
  30. Conroy BA, Lake P, Buchhorn N, McDouall-Hill J and Hughes L (1991) Studies on the effects of heavy metals on seagrasses in Lake Macquarie. In: Whitehead JH, Kidd RW and Bridgman HA (eds) Lake Macquarie: An Environmental Reappraisal, pp 55–65. University of Newcastle, NewcastleGoogle Scholar
  31. Dean TA, Stekoll MS, Jewett SC, Smith RO and Hose JE (1998) Eelgrass (Zostera marina L.) in PrinceWilliam Sound, Alaska: Effects of the Exxon Valdez oil spill. Mar Pollut Bull 36: 201–210CrossRefGoogle Scholar
  32. Deegan LA, Wright A, Ayvazian SG, Finn JT, Golden HR, Merson R and Harrison J (2002) Nitrogen loading from upland areas alters seagrass support of higher trophic levels. Aquat Conserv Freshwater Mar Ecosyst 12: 193–212CrossRefGoogle Scholar
  33. Delgado O, Ruiz J, Pérez M, Romero J and Ballesteros E (1999) Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: Seagrass decline after organic loading cessation. Oceanologica Acta 22: 109–117CrossRefGoogle Scholar
  34. den Hartog C and Polderman PJG (1975) Changes in the seagrass populations of the Dutch Waddenzee. Aquat Bot 1: 141–147CrossRefGoogle Scholar
  35. Dennison WC and Alberte RS (1982) Photosynthetic responses of Zostera marina (eelgrass) to in situ manipulations of light intensity. Oecologia 55: 137–144CrossRefGoogle Scholar
  36. Dennison WC, Aller RC and Alberte RS (1987) Sediment ammonium availability and eelgrass (Zostera marina) growth. Mar Biol 94: 469–477CrossRefGoogle Scholar
  37. Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW and Batiuk RA (1993) Assessing water quality with submerged aquatic vegetation. BioScience 43: 86–94CrossRefGoogle Scholar
  38. Dixon LK (1999) Establishing light requirements for the seagrass Thalassia testudinum: An example for Tampa Bay, Florida. In: Bortone SA (ed) Seagrasses: Monitoring, Ecology, Physiology and Management, pp 9–31. CRC Press, Boca Raton, FLGoogle Scholar
  39. Doering PH and Chamberlain RH (1999) Experimental studies on the salinity tolerance of Turtle Grass, Thalassia testudinum. In: Bortone SA (ed) Seagrasses: Monitoring, Ecology, Physiology, and Management, pp 81–98. CRC Press, Boca Raton, FLGoogle Scholar
  40. Duarte CM (1990) Seagrass nutrient content. Mar Ecol Prog Ser 67: 201–207Google Scholar
  41. Duarte CM, Terrados J, Agawin NSR, Fortes MD, Bach S and Kenworthy WJ (1997) Response of a mixed Philippine seagrass meadow to experimental burial. Mar Ecol Prog Ser 147: 285–294Google Scholar
  42. El Jay A, Ducruet J-M, Duval J-C and Pelletier JP (1997) A high sensitivity chlorophyll fluorescence assay for monitoring herbicide inhibition of photosystem II in the chlorophyte Selenastrum capricornutum: Comparison with effect on cell growth. Arch Hydrobiol 140: 273–286Google Scholar
  43. Erftemeijer PLA (1994) Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia. Bull Mar Sci 54: 403–419Google Scholar
  44. Erskine JM and Koch MS (2000) Sulfide effects on Thalassia testudinum carbon balance and adenylate energy charge. Aquat Bot 67: 275–285CrossRefGoogle Scholar
  45. Fabris GJ, Harris JE and Smith JD (1982) Uptake of cadmium by the seagrass Heterozostera tasmanica from Corio Bay and Western Port, Victoria. Aust J Mar Freshwater Res 33: 829–836CrossRefGoogle Scholar
  46. Flores-Verdugo FJ, Day JW Jr, Mee L and Briseno-Duenas R (1988) Phytoplankton production and seasonal biomass variation of seagrass, Ruppia maritime L., in a tropical Mexican lagoon with an ephemeral inlet. Estuaries 11: 51–56CrossRefGoogle Scholar
  47. Fourqurean JW, Zieman JC and Powell GVN (1992) Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr 37: 162–171Google Scholar
  48. Goodman JL, Moore KA and Dennison WC (1995) Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquat Bot 50: 37–47CrossRefGoogle Scholar
  49. Gordon DM, Grey KA, Chase SC and Simpson CJ (1994) Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquat Bot 47: 265–275CrossRefGoogle Scholar
  50. Graney RL, Giesy JP and Clark JR (1995) Field Studies. In: Rand GM (ed) Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment, pp 257–305. Taylor and Francis, WashingtonGoogle Scholar
  51. Grant-Gross Karweit M, Cronin WB and Schubel JR (1978) Suspended sediment discharge of the Susquehanna River to northern Chesapeake Bay, 1966 to 1976. Estuaries 1: 106–110CrossRefGoogle Scholar
  52. Hatcher AI and Larkum AWD (1982) The effects of short term exposure to bass strait crude oil and Corexit 8667 on benthic community metabolism in Posidonia australis Hook f. dominated microcosms. Aquat Bot 12: 219–227CrossRefGoogle Scholar
  53. Hauxwell J, Cebrian J, Furlong C and Valiela I (2001) Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82: 1007–1022CrossRefGoogle Scholar
  54. Haynes D and Johnson JE (2000) Organochlorine, heavy metal and polyaromatic hydrocarbon pollutant concentrations in the Great Barrier Reef (Australia) environment: A review. Mar Pollut Bull 41: 267–278CrossRefGoogle Scholar
  55. Haynes D, Müller J and Carters S (2000a) Pesticide and herbicide residues in sediments and seagrasses from the Great Barrier Reef World Heritage Area and Queensland coast. Mar Pollut Bull 41: 279–287CrossRefGoogle Scholar
  56. Haynes D, Ralph P, Prange J and Dennison W (2000b) The impact of the herbicide Diuron on photosynthesis in three species of tropical seagrass. Mar Pollut Bull 41: 288–293CrossRefGoogle Scholar
  57. Heyl MG (1992) Point and non-point source pollutant loading assessment. In: Roat P, Ciccolella C, Smith H and Tomasko D (eds) Sarasota Bay Framework for Action. Sarasota Bay National Estuary Program, pp 12.1–12.9. Sarasota, FLGoogle Scholar
  58. Higginson FR (1970) Ecological effects of pollution in Tuggerah Lakes. Proc Ecol Soc Aust 5: 143–152Google Scholar
  59. Hillman K, Lukatelich RJ, Bastyan G and McComb AJ (1991) Water quality and seagrass biomass, productivity and epiphyte load in Princess Royal Harbour, Oyster Harbour and King George Sound. Technical Series 39, Environmental Protection Authority. Perth, Western AustraliaGoogle Scholar
  60. Hillman K, McComb AJ and Walker DI (1995) The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquat Bot 51: 1–54CrossRefGoogle Scholar
  61. Holmer M and Bondgaard EJ (2001) Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquat Bot 70: 29–38CrossRefGoogle Scholar
  62. Howard S, Baker JM and Hiscock K (1989) The effects of oil and dispersants on seagrasses in Milford Haven. In: Dicks B (ed) Ecological Impacts of the Oil Industry, pp 61–98. John Wiley and Sons Ltd, ChichesterGoogle Scholar
  63. Howarth RE, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, CaracoN, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P and Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35: 75–139CrossRefGoogle Scholar
  64. Irvine I and Birch GF (1998) Distribution of heavy metals in surficial sediments of Port Jackson, Sydney, NewSouthWales. Aust J Earth Sci 45: 297–304Google Scholar
  65. Johansson JOR and Greening HS (1999) Seagrass restoration in Tampa Bay: A resource-based approach to estuarine management. In: Bortone SA (ed) Seagrasses: Monitoring, Ecology, Physiology, and Management, pp 279–293. CRC Press, Boca Raton, FLGoogle Scholar
  66. Juday GP and Foster NR (1990) A preliminary look at effects of the Exxon Valdez oil spill on Green Island Research natural area. Agroborealis 22: 10–17Google Scholar
  67. Kemp WM, Boynton WR, Twilley RR, Court Stevenson J and Meena JC (1983) The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes. Mar Soc Tech J 17: 78–89Google Scholar
  68. Kenworthy WJ, Durako MJ, Fatemy SMR, Valavis H and Thayer GW (1993) Ecology of seagrasses in Northeastern Saudi Arabia one year after the Gulf War oil spill. Mar Pollut Bull 27: 213–222CrossRefGoogle Scholar
  69. Kirk JTO (1994) Light and Photosynthesis in Aquatic Ecosystems, 2nd Ed. Cambridge University Press, CambridgeGoogle Scholar
  70. Kirkman H (1997) Seagrasses of Australia. Australia: State of the Environment Technical Paper Series (Estuaries and the Sea). Australian Government Printing Service, CanberraGoogle Scholar
  71. Klerks PL and Weis JS (1987) Genetic adaptation to heavy metals in aquatic organisms: A review. Environ Pollut 45: 173–205PubMedCrossRefGoogle Scholar
  72. Koch EW (1999) Sediment resuspension in a shallow Thalassia testudinum banks ex Konig bed. Aquat Bot 65: 269–280CrossRefGoogle Scholar
  73. Koch MS and Erskine JM (2001) Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: Interactions with light, salinity and temperature. J Exp Mar Biol Ecol 266: 81–95CrossRefGoogle Scholar
  74. Kurz RC, Tomasko DA, Burdick D, Ries TF, Patterson K and Finck R (1999) Recent trends in seagrass distributions in Southwest Florida coastal waters. In: Bortone SA (ed) Seagrasses: Monitoring, Ecology, Physiology, and Management, pp 157–166. CRC Press, Boca Raton, FLGoogle Scholar
  75. Lapointe BE, Tomasko DA and Matzie W (1994) Trophic structuring of marine plant communities in the Florida Keys. Bull Mar Sci 54: 696–717Google Scholar
  76. Larkum AWD (1976) Ecology of Botany Bay I. Growth of Posidonia australis (Brown) Hook. f. in Botany Bay and other Bays of the Sydney basin. Aust J Mar Freshwater Res 27: 117–127CrossRefGoogle Scholar
  77. Larkum AWD and West RJ (1983) Stability, depletion and restoration of seagrass beds. Proc Linnean Soc NSW 106: 201–212Google Scholar
  78. Larkum AWD and West RJ (1990) Long-term changes of seagrass meadows in Botany Bay, Australia. Aquat Bot 37: 55–70CrossRefGoogle Scholar
  79. Leadbitter D, Lee Long D and Dalmazzo P (1999) Seagrasses and their management-implications for research. In: Butler A and Jernakoff P (eds) Seagrass in Australia, Strategic Review and Development of AnR&Dplan, pp 210. CSIRO Publishing Australia, CollingwoodGoogle Scholar
  80. Lee KS and Dunton KH (1997) Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex Konig. J Exp Mar Biol Ecol 210: 53–73CrossRefGoogle Scholar
  81. Lewis RR III, Haddad KD and Johansson JOR (1991) Recent areal expansion of seagrass meadows in Tampa Bay, Florida: Real bay improvement or drought-induced? pp 189–192. In: Treat SF and Clark PA (eds) Proceedings, Tampa Bay Area Scientific Information Symposium 2. Tampa Bay Regional Planning Council, St. Petersburg, FLGoogle Scholar
  82. Longstaff BJ and Dennison WC (1999) Seagrass survival during pulsed turbidity events: The effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquat Bot 65: 105–121CrossRefGoogle Scholar
  83. Lyngby JE and Brix H (1982) Seasonal and environmental variation in cadmium, copper, lead and zinc concentrations in eelgrass (Zostera marina L.) in the Limfjord, Denmark. Aquat Bot 14: 59–74CrossRefGoogle Scholar
  84. Lytle JS and Lytle TF (2001) Use of plants for toxicity assessment of estuarine ecosystems. Environ Toxicol Chem 20: 68–83PubMedCrossRefGoogle Scholar
  85. MacFarlane GR and Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42: 233–240PubMedCrossRefGoogle Scholar
  86. Macinnis-Ng CMO and Ralph PJ (2002) Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass Zostera capricorni. Mar Pollut Bull 45: 100–106PubMedCrossRefGoogle Scholar
  87. Macinnis-Ng CMO and Ralph PJ (2003a) Short-term response and recovery of Zostera capricorni photosynthesis after herbicide exposure. Aquat Bot 76: 1–15CrossRefGoogle Scholar
  88. Macinnis-Ng CMO and Ralph PJ (2004) Variations in sensitivity to copper and zinc amongst three populations of the seagrass, Zostera capricorni. J Exp Mar Biol Ecol 302: 63–83CrossRefGoogle Scholar
  89. Macinnis-Ng CMO and Ralph PJ (2003b) In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni. Mar Pollut Bull 46: 1395–1407CrossRefGoogle Scholar
  90. Malea P, Haritonidis S and Kevrekidis T (1995) The short-term uptake of copper by the two parts of the seagrass Halophila stipulacea (Forsk.) Aschers. and leaf-cells viability. Fresenius Environ Bull 4: 117–122Google Scholar
  91. McGlathery KJ (2001) Macroalgal blooms contribute to decline of seagrass in nutrient-enriched coastal waters. J Phycol 37: 453–456CrossRefGoogle Scholar
  92. Mersie W, McNamee C, Seybold CA and Tierney DP (2000) Diffusion and degradation of atrazine in awater/sediment system. Environ Toxicol Chem 19: 2008–2014CrossRefGoogle Scholar
  93. Miles D (1991) The role of chlorophyll fluorescence as a bioassay for assessment of toxicity in plants. pp 297–307. In: Wang W, Gorsuch JW and Lower WR (eds) Plants for Toxicity Assessment. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  94. Moore KA (1996) Relationships between seagrass growth and survival and environmental conditions in a lower Chesapeake Bay tributary. PhD Dissertation. University of Maryland, College Park, Md. USA, p 188Google Scholar
  95. Moore KA and Wetzel RL (2000) Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems. J Exp Mar Biol Ecol 244: 1–28CrossRefGoogle Scholar
  96. Moore KA, Neckles HA and Orth RJ (1996) Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay. Mar Ecol Prog Ser 142: 247–259Google Scholar
  97. Moore KA, Wetzel RL and Orth RJ (1997) Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. J Exp Mar Biol Ecol 215: 115–134CrossRefGoogle Scholar
  98. Neverauskas VP (1987) Monitoring seagrass beds around a sewage sludge outfall in South Australia. Mar Pollut Bull 18: 158–164CrossRefGoogle Scholar
  99. Neverauskas VP (1988) Response of a Posidonia community to prolonged reduction in light. Aquat Bot 31: 361–366CrossRefGoogle Scholar
  100. Nixon SW (1997) Prehistoric nutrient inputs and productivity in Narragansett Bay. Estuaries 20: 253–261CrossRefGoogle Scholar
  101. Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WG, Boynton WR, Church TM, DiToro DM, Elmgren R, Garber JH, Giblin AE, Jahnke RA, Owens NJP, Pilson ME and Seitzinger SP (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 15: 141–180CrossRefGoogle Scholar
  102. Nixon SW, Granger SL and Nowicki BL (1995) An assessment of the annual mass balance of carbon, nitrogen, and phosphorus in Narragansett Bay. Biogeochemistry 31: 15–61CrossRefGoogle Scholar
  103. Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M, Katsuyama I, Hamada J, Beppo T, Tanaka O, Maguire RJ, Lui D, Lau YL and Pacepavicius GJ (2000) Phytotoxicity of the new antifouling compound Irgarol 1051 and a major degradation product. Mar Pollut Bull 40: 754–763CrossRefGoogle Scholar
  104. Olesen B and Sand-Jensen K (1994) Patch dynamics of eelgrass Zostera marina. Mar Ecol Prog Ser 106: 147–156Google Scholar
  105. Onuf CP (1994) Seagrasses, dredging and light in laguna madre, Texas, USA. Est Coast Shelf Sci 39: 75–91CrossRefGoogle Scholar
  106. Orth RJ and Moore KA (1983) Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation. Science 222: 51–53CrossRefPubMedGoogle Scholar
  107. Orth RJ and Moore KA (1984) Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: An historical perspective. Estuaries 7: 531–540CrossRefGoogle Scholar
  108. Orth RJ and Moore KA (1986) Seasonal and year-to-year variations in the growth of Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Aquat Bot 24: 335–341CrossRefGoogle Scholar
  109. Pedersen MF, Paling EI and Walker DI (1997) Nitrogen uptake and allocation in the seagrass Amphibolis antarctica. Aquat Bot 56: 105–117CrossRefGoogle Scholar
  110. Peralta G, Bouma TJ, van Soelen J, Pérez-Lloréns JL and Hernández I (2003) On the use of sediment fertilization for seagrass restoration: A mesocosm study on Zostera marina L. Aquat Bot 75: 95–110CrossRefGoogle Scholar
  111. Peres JM and Picard J (1975) Causes de la rarefaction et de la disparition des herbiers de Posidonia oceanica sur les cotes Francaises de la Mediterranee. Aquat Bot 1: 133–139CrossRefGoogle Scholar
  112. Pergent-Martini C and Pergent G (1996) Spatio-temporal dynamics of Posidonia oceanica beds near a sewage outfall (Mediterranean—France), pp 299–306. In: Kuo J, Phillips RC, Walker DI and Kirkman H (eds) Seagrass Biology: Proceedings of an International Workshop Rottnest Island, Western Australia, 25-29 January 1996. Sciences UWA, PerthGoogle Scholar
  113. Pergent-Martini C and Pergent G (2000) Marine phanerogams as a tool in the evaluation of marine trace-metal contamination: An example from the Mediterranean. Int J Environ Pollut 13: 126–147CrossRefGoogle Scholar
  114. Peters EC, Gassman NJ, Firman JC, Richmond RH and Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16: 12–40CrossRefGoogle Scholar
  115. Powell GVN, Kenworthy WJ and Fourqurean JW (1989) Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation. Bull Mar Sci 44: 324–340Google Scholar
  116. Powell GVN, Fourqurean JW, Kenworthy WJ and Zieman JC (1991) Bird colonies cause seagrass enrichment in a subtropical estuary: Observational and experimental evidence. Est Coast Shelf Sci 32: 567–579CrossRefGoogle Scholar
  117. Prange JA and Dennison WC (2000) Physiological responses of five seagrass species to trace metals. Mar Pollut Bull 41: 327–336CrossRefGoogle Scholar
  118. Prasad MNV and Strzalka K (1999) Impact of heavy metals on photosynthesis. pp 117–138. In: Prasad MNV and Hagemeyer J (eds) Heavy Metal Stress in Plants. Springer, BerlinGoogle Scholar
  119. Preen AR, Lee Long WJ and Coles RG (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 52: 3–17CrossRefGoogle Scholar
  120. Pregnall AM, Smith RD, Kursar TA and Alberte RS (1984) Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia. Mar Biol 83: 141–147CrossRefGoogle Scholar
  121. Ralph PJ (2000) Herbicide toxicity of Halophila ovalis, assessed by chlorophyll afluorescence. Aquat Bot 66: 141–152CrossRefGoogle Scholar
  122. Ralph PJ and Burchett MD (1998a) Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 103: 91–101CrossRefGoogle Scholar
  123. Ralph PJ and Burchett MD (1998b) Impact of petrochemicals on the photosynthesis of Halophila ovalis using chlorophyll fluorescence. Mar Pollut Bull 36: 429–436CrossRefGoogle Scholar
  124. Ren L, Huang XD, McConkey BJ, Dixon DG and Greenberg BM (1994) Photoinduced toxicity of three polycyclic aromatic hydrocarbons (Fluoranthene, Pyrene and Naphthalene) to the duckweed Lemna gibba L. G-3. Ecotoxicol Environ Saf 28: 160–171PubMedCrossRefGoogle Scholar
  125. Reyes E and Merino M (1991) Diel dissolved oxygen dynamics and eutrophication in a shallow, well-mixed tropical lagoon (Cancun, Mexico). Estuaries 14: 372–381CrossRefGoogle Scholar
  126. Rogers HR, Watts CD and Johnson I (1996) Comparative predictions of Irgarol 1051 and Atrazine fate and toxicity. Environ Technol 17: 553–556CrossRefGoogle Scholar
  127. Sanchiz C, Garcia-Carrascosa AM and Pastor AM (2001) Relationships between sediment physicochemical characteristics and heavy metal bioaccumulation in Mediterranean soft-bottom macrophytes. Aquat Bot 69: 63–73CrossRefGoogle Scholar
  128. Sarasota Bay National Estuary Program (2000) Sarasota Bay 2000: A Decade of Progress. Sarasota Bay National Estuary Program, Sarasota, FLGoogle Scholar
  129. Scarlett A, Donkin P, Fileman TW, Evans SV and Donkin ME (1999) Risk posed by the antifouling paint Irgarol 1051 to the seagrass, Zostera marina. Aquat Toxicol 45: 159–170CrossRefGoogle Scholar
  130. Schlacher-Hoenlinger MA and Schlacher TA (1998) Accumulation, contamination, and seasonal variability of trace metals in the coastal zone-patterns in a seagrass meadow from the Mediterranean. Mar Biol 131: 401–410CrossRefGoogle Scholar
  131. Schwarzschild AC, MacIntyre WG, Moore KA and Libelo EL (1994) Zostera marina L. growth response to atrazine in rootrhizome and whole plant exposure experiments. J Exp Mar Biol Ecol 183: 77–89CrossRefGoogle Scholar
  132. Shepherd SA, McComb AJ, Bulthuis DA, Neverauskas V, Steffensen DA and West R (1989) Decline of seagrasses. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses. A Treatise of the Biology of Seagrasses with Special Reference to the Australian Region, pp 346–393. Elsevier, The NetherlandsGoogle Scholar
  133. Short FT (1987) Effects of sediment nutrients on seagrasses: Literature review and mesocosm experiment. Aquat Bot 27: 41–57CrossRefGoogle Scholar
  134. Short FT and Burdick DM (1996) Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19: 730–739CrossRefGoogle Scholar
  135. Short FT and Wyllie-Echeverria S (1996) Natural and humaninduced disturbance of seagrasses. Environ Conserv 23: 17–27CrossRefGoogle Scholar
  136. Short FT, Burdick DM and Kaldy JE (1995) Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol Oceanogr 40: 740–749CrossRefGoogle Scholar
  137. Short FT, Davis MW, Gibson RA and Zimmerman CF (1985) Evidence for phosphorus limitation in carbonate sediments of the seagrass Syringodium filiforme. Est Coast Shelf Sci 20: 419–430CrossRefGoogle Scholar
  138. Short FT, Denison WC and Capone DG (1990) Phosphoruslimited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar Ecol Prog Ser 62: 169–174Google Scholar
  139. Silberstein K, Chiffings AW and McComb AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. III. The effect of epiphytes on productivity of Posidonia australis Hook. f. Aquat Bot 24: 355–371CrossRefGoogle Scholar
  140. Smith SV and Atkinson MJ (1983) Mass balance of carbon and phosphorus in Shark Bay, Western Australia. Limnol Oceanogr 28: 625–639CrossRefGoogle Scholar
  141. Solomon KR, Baker DB, Richards RP, Dixon KR, Klaine SJ, La Point TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP, Hall LW and Williams WM (1996) Ecological risk assessment of atrazine in North American surfacewaters. Environ Toxicol Chem 15: 31–76CrossRefGoogle Scholar
  142. Squires AP, Zarbock H and Janicki S (1998) Loadings of total nitrogen, total phosphorus and total suspended solids to Charlotte Harbor. In: Treat SF (ed) Proceedings of the Charlotte Harbor Public Conference and Technical Symposium; 1997 March 15–16; Punta Gorda, Florida. Charlotte Harbor National Estuary Program Technical Report No. 98–02, pp 187–200. South Florida Water Management District, West Palm Beach (Fla.)Google Scholar
  143. Stephens A (1995) The distribution of seagrass in Western Port, Victoria. Publication 490. Environmental Protection Authority, MelbourneGoogle Scholar
  144. Tampa Bay National Estuary Program (1996) Charting the Course: The Comprehensive Conservation and Management Plan for Tampa Bay. Tampa Bay National Estuary Program, St. Petersburg, FLGoogle Scholar
  145. Thomas KV, Blake SV and Waldock MJ (2000) Antifouling paint booster biocide contamination in UK marine sediments. Mar Pollut Bull 40: 739–745CrossRefGoogle Scholar
  146. Thomas KV, Fileman TW, Readman JW and Waldock MJ (2001) Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar Pollut Bull 42: 677–688PubMedCrossRefGoogle Scholar
  147. Thorhaug A (1988) Dispersed oil effects on mangroves, seagrasses and corals in the wider Caribbean. In: Proceedings of the Sixth International Coral Reef Symposium, pp 337–339. Australia, TownsvilleGoogle Scholar
  148. Thorhaug A (1992) Oil spills in the tropics and subtropics. In: Connell DW and Hawker D (eds) Pollution in Tropical Aquatic Systems, pp 99–127. CRC Press Inc, LondonGoogle Scholar
  149. Thorhaug A, Marcus J and Booker F (1986) Oil and dispersed oil on subtropical and tropical seagrasses in laboratory studies. Mar Pollut Bull 17: 357–361CrossRefGoogle Scholar
  150. Tomasko DA (2000) Seagrass restoration varies in Southwest Florida's estuaries. Estuarine Research Federation Newsletter, Vol 26, Fall 2000Google Scholar
  151. Tomasko DA (2002) Status and trends of seagrass coverage in Tampa Bay, with reference to other Southwest Florida estuaries. pp 11–20. In: Greening H (ed) Seagrass Management: It's Not Just Nutrients!. Tampa Bay Estuary Program, St. Petersburg, FLGoogle Scholar
  152. Tomasko DA and Lapointe BE (1991) Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: Field observations and experimental studies. Mar Ecol Prog Ser 75: 9–17CrossRefGoogle Scholar
  153. Tomasko DA and Hall MO (1999) Productivity and biomass of the seagrass Thalassia testudinum along a gradient of freshwater influence in Charlotte Harbor, Florida. Estuaries 22: 592–602CrossRefGoogle Scholar
  154. Tomasko DA, Dawes CJ and Hall MO (1996) The effects of anthropogenic nutrient enrichment on Turtle Grass (Thalassia testudinum) in Sarasota Bay, Florida. Estuaries 19: 448–456CrossRefGoogle Scholar
  155. Tomasko DA, Bristol DL and Ott JA (2001) Assessment of present and future nitrogen loads, water quality, and seagrass (Thalassia testudinum) depth distribution in Lemon Bay, Florida. Estuaries 24: 926–938CrossRefGoogle Scholar
  156. Turner AP (1994) The responses of plants to heavy metals. In: Ross SM (ed) Toxic Metals in Soil-Plant Systems, pp 153–187. John Wiley & Son, New YorkGoogle Scholar
  157. Turner RE, Stanley D, Brock D, Pennock J and Rabalais NN (2001) A comparison of independent N-loading estimates for US estuaries. In: Valigura RA, Alexander RB, Castro MS, Meyers TP, Paerl HW, Stacey PE and Turner RE (eds) Nitrogen Loading in Coastal Water Bodies: An Atmospheric Perspective, pp 107–118. American Geophysical Union, Washington, DCGoogle Scholar
  158. Udy JW and Dennison WC (1997a) Physiological responses of seagrasses used to identify anthropogenic nutrient inputs. Mar Freshwater Res 48: 605–614CrossRefGoogle Scholar
  159. Udy JW and Dennison WC (1997b) Growth and physiological responses of three seagrass species to elevated sediment nutrients. J Exp Mar Biol Ecol 217: 253–277CrossRefGoogle Scholar
  160. Udy JW, Dennison WC, Lee Long WJ and McKenzie LJ (1999) Responses of seagrass to nutrients in the Great Barrier Reef, Australia. Mar Ecol Prog Ser 185: 257–271Google Scholar
  161. Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D and Foreman K (1997) Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42: 1105–1118CrossRefGoogle Scholar
  162. van Katwijk MM, Vergeer LHT, Schmitz GHW and Roelois JGM (1997) Ammonium toxicity in eelgrass Zostera marina. Mar Ecol Prog Ser 157: 159–173Google Scholar
  163. van Lent F, Verschuure JM and van Veghel MLJ (1995) Comparative study on populations of Zostera marina L. (eelgrass): In situ nitrogen enrichment and light manipulation. J Exp Mar Biol Ecol 185: 55–76CrossRefGoogle Scholar
  164. Verkleij JAC and Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy Metal Tolerance in Plants: Evolutionary Aspects, pp 179–193. CRC Press Inc., FloridaGoogle Scholar
  165. Walker DI and McComb AJ (1988) Seasonal variation in the production, biomass and nutrient status of Amphibolis antarctica (Labill.) Sonder ex Aschers. and Posidonia australis Hook f. in Shark Bay, Western Australia. Aquat Bot 31: 259–275CrossRefGoogle Scholar
  166. Walker DI and McComb AJ (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25: 191–165CrossRefGoogle Scholar
  167. Ward LG, Kemp WM and Boynton WR (1984) The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar Geology 59: 85–103CrossRefGoogle Scholar
  168. Ward TJ (1987) Temporal variation of metals in the seagrass Posidonia australis and its potential as a sentinel accumulator near a lead smelter. Mar Biol 95: 315–321CrossRefGoogle Scholar
  169. Ward TJ (1989) The accumulation and effects of metals in seagrass habitats. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region. pp 797–820. Elsevier, New YorkGoogle Scholar
  170. Waycott M (1998) Genetic variation, its assessment and implications to the conservation of seagrasses. Mol Biol 7: 793–800Google Scholar
  171. Wolfe MF, Schlosser JA, Schwartz GJB, Singaram S, Mielbrecht EE, Tjeerdema RS and Sowby ML (1998) Influence of dispersants on bioavailability and trophic transfer of petroleum hydrocarbons to primary levels of a marine food chain. Aquat Toxicol 42: 211–227CrossRefGoogle Scholar
  172. Zarbock HW, Janicki AJ and Janicki SS (1996) Estimates of total nitrogen, total phosphorus, and total suspended solids to Tampa Bay, Florida. Technical Appendix: 1992–1994 Total Nitrogen Loadings to Tampa Bay, Florida. Technical Publication # 19–96, Tampa Bay National Estuary Program. St. Petersburg, FLGoogle Scholar
  173. Zieman JC, Orth R, Phillips RC, Thayer G and Thorhaug A (1984) The effects of oil on seagrass ecosystems. In: Cairns J and Buikema AL (eds) Restoration of Habitats Impacted by Oil Spills, pp 37–64. Butterworth, BostonGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Peter J. Ralph
    • 1
  • David Tomasko
    • 2
  • Kenneth Moore
    • 3
  • Stephanie Seddon
    • 4
    • 5
  • Catrionà M. O. Macinnis-Ng
    • 6
  1. 1.Institute for Water and Environmental Resource ManagementUniversity of TechnologySydneyAustralia
  2. 2.Resource Management DepartmentEnvironmental Section2379 Broad Street BrooksvilleUSA
  3. 3.Virginia Institute of Marine ScienceCollege of William and MaryGloucester PointUSA
  4. 4.South Australian Research and Development Institute (Aquatic Sciences)Environment and EcologyHenley BeachAustralia
  5. 5.Institute for Water and Environmental Resource ManagementUniversity of TechnologySydneyAustralia
  6. 6.Institute for Water and Environmental Resource ManagementUniversity of TechnologySydneyAustralia

Personalised recommendations