Advertisement

Novel Approaches to p53-Based Therapy: ONYX-015

  • Frank McCormick

Cancer is caused by gain of function of proteins involved in proliferation and survival, and loss of function of proteins that regulate these processes (Hanahan and Weinberg, 2000). Strategies for treating cancer generally involve development of small molecules that block hyperactive enzymes, or take advantage of abnormal expression of protein targets on the surface of cancer cells. Developing therapies based on loss of function of tumor suppressors presents novel challenges. Loss of the protein phosphates PTEN and loss of the G1/S checkpoint protein pRB occurs frequently in cancer, and offers a number of potential drug targets. Loss of PTEN leads to hyperactivation of downstream enzymes such as AKT and mTOR (McCormick, 2004) whereas loss of pRB leads to hyper-activation of the transcription factor E2F, and increased expression of numerous potential targets, some of which have already been exploited for cancer therapy (dihydrofolate reductase and thymidylate synthase, for example, are the targets of methotrexate and 5-fluorouracil, respectively). Loss of p53, on the other hand, does not appear to offer any direct targets for intervention: in contrast to PTEN and pRB, p53 is a positive regulatory protein, whose targets are obviously lost rather than hyper-activated in cancer cells.

Keywords

Cancer Gene Therapy Oncolytic Adenovirus Mdm2 Activity Primary Human Epithelial Cell Positive Regulatory Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders M., Christian C., McMahon M., McCormick F., Korn W.M. Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res. 2003. 63: 2088-2095.PubMedGoogle Scholar
  2. Babiss L.E., Ginsberg H.S., Darnell J.E. Jr. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol. 1985. 5: 2552-2558.PubMedGoogle Scholar
  3. Bates S., Phillips A.C., Clark P.A., Stott F., Peters G., Ludwig R.L., Vousden K.H. p14ARF links the tumour suppressors RB and p53. Nature. 1998. 395: 124-125.CrossRefPubMedGoogle Scholar
  4. Bischoff J.R., Kirn D.H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J.A., Sampson-Johannes A., Fattaey A., McCormick F. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996. 274: 373-376.CrossRefPubMedGoogle Scholar
  5. Dobner T., Horikoshi N., Rubenwolf S., Shenk T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science. 1996. 272: 1470-1473.CrossRefPubMedGoogle Scholar
  6. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000. 100: 57-70.CrossRefPubMedGoogle Scholar
  7. Harada J.N., Berk A.J. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol. 1999. 73: 5333-5344.PubMedGoogle Scholar
  8. Harada J.N., Shevchenko A., Pallas D.C., and Berk A.J. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol. 2002. 76: 9194-9206.CrossRefPubMedGoogle Scholar
  9. Heise C., Sampson-Johannes A., Williams A., McCormick F., Von Hoff D.D., Kirn D.H. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997. 3: 639-645.CrossRefPubMedGoogle Scholar
  10. Kao C.C., Yew P.R., Berk A.J.. Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology. 1990. 179: 806-814.CrossRefPubMedGoogle Scholar
  11. Khuri F.R., Nemunaitis J., Ganly I., Arseneau J., Tannock I.F., Romel L., Gore M., Ironside J., MacDougall R.H., Heise C., Randlev B., Gillenwater A.M., Bruso P., Kaye S.B., Hong W.K., Kirn D.H. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer [see comments]. Nat Med. 2000. 6: 879-885.CrossRefPubMedGoogle Scholar
  12. Lomax M., Frie M.. Polyoma virus disrupts ARF signaling to p53. Oncogene. 2001. 20: 4951-4960.CrossRefPubMedGoogle Scholar
  13. McCormick F. ONYX-015 selectivity and the p14ARF pathway. Oncogene. 2000. 19: 6670-6672.CrossRefPubMedGoogle Scholar
  14. McCormick F. Cancer gene therapy: fringe or cutting edge?. Nat Rev Cancer. 2001. 1: 130-141.CrossRefPubMedGoogle Scholar
  15. McCormick F. Cancer: survival pathways meet their end. Nature. 2004. 428: 267-269.CrossRefPubMedGoogle Scholar
  16. McCormick F., Harlow, E. Association of a murine 53,000-dalton phosphoprotein with simian virus 40 large-T antigen in transformed cells. J Virol. 1980. 34: 213-224.PubMedGoogle Scholar
  17. Milner J., McCormick F. Lymphocyte stimulation: concanavalin A induces the expression of a 53K protein. Cell Biol Int Rep. 1980. 4: 663-667.CrossRefPubMedGoogle Scholar
  18. Nishizaki M., Fujiwara T., Tanida T., Hizuta A., Nishimori H., Tokino T., Nakamura Y., Bouvet M., Roth J.A., Tanaka N. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer. 1999. Res 5: 1015-1023.Google Scholar
  19. Querido E., Blanchette P., Yan Q., Kamura T., Morrison M., Boivin D., Kaelin W.G., Conaway R.C., Conaway J.W., Branton P.E. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 2001. 15: 3104-3117.CrossRefPubMedGoogle Scholar
  20. Reid T., Galanis E., Abbruzzese J., Sze D., Wein L.M., Andrews J., Randlev B., Heise C., Uprichard M., Hatfield M., Rome L., Rubin J., Kirn D. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 2002. 62: 6070-6079.PubMedGoogle Scholar
  21. Ries S.J., Brandts C.H., Chung A.S., Biederer C.H., Hann B.C., Lipner E.M., McCormick F., Korn W.M. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nat Med. 2000. 6: 1128-1133.CrossRefPubMedGoogle Scholar
  22. Rothmann T., Hengstermann A., Whitaker N.J., Scheffner M. zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998. 72: 9470-9478.PubMedGoogle Scholar
  23. Rudin C.M., Cohen E.E., Papadimitrakopoulou V.A., Silverman S. Jr., Recant W., El-Naggar A.K., Stenson K., Lippman S.M., Hong W.K., Vokes E.E. An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J Clin Oncol. 2003. 21: 4546-4552.CrossRefPubMedGoogle Scholar
  24. Scheffner M., Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990. 63: 1129-1136.CrossRefPubMedGoogle Scholar
  25. Swisher S.G., Roth J.A. Clinical update of Ad-p53 gene therapy for lung cancer. Surg Oncol Clin N Am. 2002. 11: 521-535.CrossRefPubMedGoogle Scholar
  26. Vassilev L.T., Vu B.T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., Kammlott U., Lukacs C., Klein C., Fotouhi N., Liu E.A.. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004. 303: 844-848.CrossRefPubMedGoogle Scholar
  27. Yew P.R., Kao C.C., Berk, A.J. Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology. 1990. 179: 795-805.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Frank McCormick
    • 1
  1. 1.UCSF Comprehensive Cancer Center and Cancer Research InstituteSan FranciscoUSA

Personalised recommendations