Skip to main content

Novel Approaches to p53-Based Therapy: ONYX-015

  • Chapter
25 Years of p53 Research
  • 1226 Accesses

Cancer is caused by gain of function of proteins involved in proliferation and survival, and loss of function of proteins that regulate these processes (Hanahan and Weinberg, 2000). Strategies for treating cancer generally involve development of small molecules that block hyperactive enzymes, or take advantage of abnormal expression of protein targets on the surface of cancer cells. Developing therapies based on loss of function of tumor suppressors presents novel challenges. Loss of the protein phosphates PTEN and loss of the G1/S checkpoint protein pRB occurs frequently in cancer, and offers a number of potential drug targets. Loss of PTEN leads to hyperactivation of downstream enzymes such as AKT and mTOR (McCormick, 2004) whereas loss of pRB leads to hyper-activation of the transcription factor E2F, and increased expression of numerous potential targets, some of which have already been exploited for cancer therapy (dihydrofolate reductase and thymidylate synthase, for example, are the targets of methotrexate and 5-fluorouracil, respectively). Loss of p53, on the other hand, does not appear to offer any direct targets for intervention: in contrast to PTEN and pRB, p53 is a positive regulatory protein, whose targets are obviously lost rather than hyper-activated in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders M., Christian C., McMahon M., McCormick F., Korn W.M. Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res. 2003. 63: 2088-2095.

    CAS  PubMed  Google Scholar 

  • Babiss L.E., Ginsberg H.S., Darnell J.E. Jr. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol. 1985. 5: 2552-2558.

    CAS  PubMed  Google Scholar 

  • Bates S., Phillips A.C., Clark P.A., Stott F., Peters G., Ludwig R.L., Vousden K.H. p14ARF links the tumour suppressors RB and p53. Nature. 1998. 395: 124-125.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff J.R., Kirn D.H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J.A., Sampson-Johannes A., Fattaey A., McCormick F. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996. 274: 373-376.

    Article  CAS  PubMed  Google Scholar 

  • Dobner T., Horikoshi N., Rubenwolf S., Shenk T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science. 1996. 272: 1470-1473.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000. 100: 57-70.

    Article  CAS  PubMed  Google Scholar 

  • Harada J.N., Berk A.J. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol. 1999. 73: 5333-5344.

    CAS  PubMed  Google Scholar 

  • Harada J.N., Shevchenko A., Pallas D.C., and Berk A.J. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol. 2002. 76: 9194-9206.

    Article  PubMed  Google Scholar 

  • Heise C., Sampson-Johannes A., Williams A., McCormick F., Von Hoff D.D., Kirn D.H. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997. 3: 639-645.

    Article  CAS  PubMed  Google Scholar 

  • Kao C.C., Yew P.R., Berk A.J.. Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology. 1990. 179: 806-814.

    Article  CAS  PubMed  Google Scholar 

  • Khuri F.R., Nemunaitis J., Ganly I., Arseneau J., Tannock I.F., Romel L., Gore M., Ironside J., MacDougall R.H., Heise C., Randlev B., Gillenwater A.M., Bruso P., Kaye S.B., Hong W.K., Kirn D.H. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer [see comments]. Nat Med. 2000. 6: 879-885.

    Article  CAS  PubMed  Google Scholar 

  • Lomax M., Frie M.. Polyoma virus disrupts ARF signaling to p53. Oncogene. 2001. 20: 4951-4960.

    Article  CAS  PubMed  Google Scholar 

  • McCormick F. ONYX-015 selectivity and the p14ARF pathway. Oncogene. 2000. 19: 6670-6672.

    Article  CAS  PubMed  Google Scholar 

  • McCormick F. Cancer gene therapy: fringe or cutting edge?. Nat Rev Cancer. 2001. 1: 130-141.

    Article  CAS  PubMed  Google Scholar 

  • McCormick F. Cancer: survival pathways meet their end. Nature. 2004. 428: 267-269.

    Article  CAS  PubMed  Google Scholar 

  • McCormick F., Harlow, E. Association of a murine 53,000-dalton phosphoprotein with simian virus 40 large-T antigen in transformed cells. J Virol. 1980. 34: 213-224.

    CAS  PubMed  Google Scholar 

  • Milner J., McCormick F. Lymphocyte stimulation: concanavalin A induces the expression of a 53K protein. Cell Biol Int Rep. 1980. 4: 663-667.

    Article  CAS  PubMed  Google Scholar 

  • Nishizaki M., Fujiwara T., Tanida T., Hizuta A., Nishimori H., Tokino T., Nakamura Y., Bouvet M., Roth J.A., Tanaka N. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer. 1999. Res 5: 1015-1023.

    CAS  Google Scholar 

  • Querido E., Blanchette P., Yan Q., Kamura T., Morrison M., Boivin D., Kaelin W.G., Conaway R.C., Conaway J.W., Branton P.E. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 2001. 15: 3104-3117.

    Article  CAS  PubMed  Google Scholar 

  • Reid T., Galanis E., Abbruzzese J., Sze D., Wein L.M., Andrews J., Randlev B., Heise C., Uprichard M., Hatfield M., Rome L., Rubin J., Kirn D. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 2002. 62: 6070-6079.

    CAS  PubMed  Google Scholar 

  • Ries S.J., Brandts C.H., Chung A.S., Biederer C.H., Hann B.C., Lipner E.M., McCormick F., Korn W.M. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nat Med. 2000. 6: 1128-1133.

    Article  CAS  PubMed  Google Scholar 

  • Rothmann T., Hengstermann A., Whitaker N.J., Scheffner M. zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998. 72: 9470-9478.

    CAS  PubMed  Google Scholar 

  • Rudin C.M., Cohen E.E., Papadimitrakopoulou V.A., Silverman S. Jr., Recant W., El-Naggar A.K., Stenson K., Lippman S.M., Hong W.K., Vokes E.E. An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J Clin Oncol. 2003. 21: 4546-4552.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M., Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990. 63: 1129-1136.

    Article  CAS  PubMed  Google Scholar 

  • Swisher S.G., Roth J.A. Clinical update of Ad-p53 gene therapy for lung cancer. Surg Oncol Clin N Am. 2002. 11: 521-535.

    Article  PubMed  Google Scholar 

  • Vassilev L.T., Vu B.T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., Kammlott U., Lukacs C., Klein C., Fotouhi N., Liu E.A.. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004. 303: 844-848.

    Article  CAS  PubMed  Google Scholar 

  • Yew P.R., Kao C.C., Berk, A.J. Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology. 1990. 179: 795-805.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

McCormick, F. (2007). Novel Approaches to p53-Based Therapy: ONYX-015. In: Hainaut, P., Wiman, K.G. (eds) 25 Years of p53 Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2922-6_19

Download citation

Publish with us

Policies and ethics