Patterns of TP53 Mutations in Human Cancer: Interplay Between Mutagenesis, DNA Repair and Selection

  • Hong Shi
  • Florence Le Calvez
  • Magali Olivier
  • Pierre Hainaut

Somatic mutations are the cornerstone of cancer (Hanahan et al. 2000). The development of cancer involves the contributions of many heritable genetic events as well as of a large number of epigenetic changes, but what makes the turning point between untransformed and transformed cell irreversible is the acquisition of targeted, somatic mutations, conferring to cells a selective advantage for clonal proliferation. These mutations can occur in many different genes, but only a handful of them are frequently mutated in a wide variety of human cancers. They include genes of the RAS family (mainly KRAS), BRAF1, APC,α–Catenin, p16/INK4a, PTEN and TP53. After over 20 years of research on mutation detection in cancers, TP53 remains the world champion of somatic mutations, with over 70 % of all the mutations described so far in human cancers (Hainaut et al. 2000).

Keywords

Hepatitis Adenocarcinoma Mold Arginine Styrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambs S., Bennett W.P., Merriam W.G., Ogunfusika M.O., Oser S.M., Harrington A.M., Shields P.G., Felley-Bosco E., Hussain S.P., Harris C.C. Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst. 1999; 91:86-88.CrossRefPubMedGoogle Scholar
  2. Antonarakis S.E., Krawczak M., Cooper D.N. The nature and mechanisms of human gene mutations.In: The genetic basis of human cancer. 2002; Vogelstein, B and Kinzler, W, eds, 2nd edition:7-41.Google Scholar
  3. Ateenyi-Agaba C., Dai M., le Calvez F., Katongole-Mbidde E., Smet A., Tommasino M., Franceschi S., Hainaut P., Weiderpass E. TP53 mutations in squamous-cell carcinomas of the conjunctiva: evidence for UV-induced mutagenesis. Mutagenesis. 2004a; 19:399-401.CrossRefPubMedGoogle Scholar
  4. Ateenyi-Agaba C., Weiderpass E., Smet A., Dong W., Dai M., Kahwa B., Wabinga H., Katongole-Mbidde E., Franceschi S., Tommasino M. Epidermodysplasia verruciformis human papillomavirus types and carcinoma of the conjunctiva: a pilot study. Br J Cancer. 2004b; 90:1777-1779.PubMedGoogle Scholar
  5. Bergamaschi D., Gasco M., Hiller L., Sullivan A., Syed N., Trigiante G., Yulug I., Merlano M., Numico G., Comino A., Attard M., Reelfs O., Gusterson B., Bell A.K., Heath V., Tavassoli M., Farrell P.J., Smith P., Lu X., Crook T. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell. 2003; 3:387-402.CrossRefPubMedGoogle Scholar
  6. Bregman D.B., Pestell R.G., Kidd V.J. Cell cycle regulation and RNA polymerase II.Front Biosci. 2000; 5:D244-D257.CrossRefPubMedGoogle Scholar
  7. Burchell B., Coughtrie M.W. Genetic and environmental factors associated with variation of human xenobiotic glucuronidation and sulfation. Environ Health Perspect. 1997; 105 Suppl 4:739-747.CrossRefPubMedGoogle Scholar
  8. Chen C.J., Yu M.W., Liaw Y.F. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol. 1997; 12:S294-S308.CrossRefPubMedGoogle Scholar
  9. Cho Y., Gorina S., Jeffrey P.D., Pavletich N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations [see comments]. Science. 1994; 265:346-355.CrossRefPubMedGoogle Scholar
  10. Cooper G.M., Brudno M., Stone E.A., Dubchak I., Batzoglou S., Sidow A. Characterization of evolutionary rates and constraints in three Mammalian genomes. Genome Res. 2004; 14:539-548.CrossRefPubMedGoogle Scholar
  11. Dai M., Clifford G.M., le Calvez F., Castellsague X., Snijders P.J., Pawlita M., Herrero R., Hainaut P., Franceschi S. Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study. Cancer Res. 2004; 64:468-471.CrossRefPubMedGoogle Scholar
  12. DeMarini D.M., Landi S., Tian D., Hanley N.M., Li X., Hu F., Roop B.C., Mass M.J., Keohavong P., Gao W., Olivier M., Hainaut P., Mumford J.L. Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res. 2001; 61:6679-6681.PubMedGoogle Scholar
  13. Denissenko M.F., Koudriakova T.B., Smith L., O'Connor T.R., Riggs A.D., Pfeifer G.P. The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts. Oncogene. 1998a; 17:3007-3014.CrossRefPubMedGoogle Scholar
  14. Denissenko M.F., Pao A., Pfeifer G.P., Tang M. Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers. Oncogene. 1998b; 16:1241-1247.CrossRefPubMedGoogle Scholar
  15. Denissenko M.F., Pao A., Tang M., Pfeifer G.P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996; 274:430-432.CrossRefPubMedGoogle Scholar
  16. Dittmer D., Pati S., Zambetti G., Chu S., Teresky A.K., Moore M., Finlay C., Levine A.J. Gain of function mutations in p53. Nat Genet. 1993; 4:42-46.CrossRefPubMedGoogle Scholar
  17. Dogliotti E., Hainaut P., Hernandez T., D'Errico M., DeMarini D.M. Mutation spectra resulting from carcinogenic exposure: from model systems to cancer-related genes. Recent Results Cancer Res. 1998; 154:97-124.PubMedGoogle Scholar
  18. Doll R., Peto R., Boreham J., Sutherland I. Mortality in relation to smoking: 50 years' observations on male British doctors. BMJ. 2004; 328:1507-1519CrossRefGoogle Scholar
  19. Dumaz N., Brougard C., Sarasin A., Daya-Grosjean L. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-defiicent xeroderma pigmentosum patients. Proc Natl Acad Sci U S A. 1993; 90:10529-10533.CrossRefPubMedGoogle Scholar
  20. Essigmann J.M., Wood M.L. The relationship between the chemical structures and mutagenic specificities of the DNA lesions formed by chemical and physical mutagens. Toxicol Lett. 1993; 67:29-39.CrossRefPubMedGoogle Scholar
  21. Flaman J.M., Frebourg T., Moreau V., Charbonnier F., Martin C., Chappuis P., Sappino A.P., Limacher I.M., Bron L., Benhattar J. A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci U S A. 1995; 92:3963-3967.CrossRefPubMedGoogle Scholar
  22. Flaman J.M., Frebourg T., Moreau V., Charbonnier F., Martin C., Ishioka C., Friend S.H., Iggo R. A rapid PCR fidelity assay. Nucleic Acids Res. 1994; 22:3259-3260.CrossRefPubMedGoogle Scholar
  23. Friedler A., DeDecker B.S., Freund S.M., Blair C., Rudiger S., Fersht A.R. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation". J Mol Biol. 2004; 336:187-196.CrossRefPubMedGoogle Scholar
  24. Gazdar A., Franklin W.A., Brambilla E., Hainaut P., Yokota J., Harris C.C. Genetic and molecular alterations.in : Pathology and genetics: Tumours of the lung, pleura, thymus and heart, Travis W D, Brambilla, E, Müller-Hermelink, K and Harris, C C, eds. 2004; IARC Press, publisher:Google Scholar
  25. Greenblatt M.S., Bennett W.P., Hollstein M., Harris C.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994; 54:4855-4878.PubMedGoogle Scholar
  26. Greenblatt M.S., Grollman A.P., Harris C.C. Deletions and insertions in the p53 tumor suppressor gene in human cancers: confirmation of the DNA polymerase slippage/misalignment model. Cancer Res. 1996; 56:2130-2136.PubMedGoogle Scholar
  27. Guengerich F.P. Metabolism of chemical carcinogens. Carcinogenesis. 2000; 21:345-351.CrossRefPubMedGoogle Scholar
  28. Guengerich F.P. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys. 2003; 409:59-71.CrossRefPubMedGoogle Scholar
  29. Hainaut P., Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000; 77:82-137.Google Scholar
  30. Hainaut P., Pfeifer G.P. Patterns of p53 GT transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis. 2001; 22:367-374.CrossRefPubMedGoogle Scholar
  31. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100:57-70.CrossRefPubMedGoogle Scholar
  32. Hanawalt P.C., Ford J.M., Lloyd D.R. Functional characterization of global genomic DNA repair and its implications for cancer. Mutat Res. 2003; 544:107-114.CrossRefPubMedGoogle Scholar
  33. Harris C.C. The 1995 Walter Hubert Lecture--molecular epidemiology of human cancer: insights from the mutational analysis of the p53 tumour-suppressor gene. Br J Cancer. 1996; 73:261-269.PubMedGoogle Scholar
  34. He X.Z., Chen W., Liu Z.Y., Chapman R.S. An epidemiological study of lung cancer in Xuan Wei County, China: current progress. Case-control study on lung cancer and cooking fuel. Environ Health Perspect 1991; 94:9-13.CrossRefPubMedGoogle Scholar
  35. Hemminki K., Thilly W.G. Implications of results of molecular epidemiology on DNA adducts, their repair and mutations for mechanisms of human cancer.IARC Sci Publ. 2004; 217-235.Google Scholar
  36. Hernandez-Boussard T., Montesano R., Hainaut P. Sources of bias in the detection and reporting of p53 mutations in human cancer: analysis of the IARC p53 mutation database. Genet Anal. 1999; 14:229-233.PubMedGoogle Scholar
  37. Hoeijmakers J.H. Genome maintenance mechanisms for preventing cancer. Nature. 2001; 411:366-374.CrossRefPubMedGoogle Scholar
  38. Holliday R., Grigg G.W. DNA methylation and mutation. Mutat Res. 1993; 285:61-67.PubMedGoogle Scholar
  39. Hollstein M., Hergenhahn M., Yang Q., Bartsch H., Wang Z.Q., Hainaut P. New approaches to understanding p53 gene tumor mutation spectra [see comments]. Mutat Res. 1999; 431:199-209.PubMedGoogle Scholar
  40. Hollstein M., Sidransky D., Vogelstein B., Harris C.C. p53 mutations in human cancers. Science. 1991; 253:49-53.CrossRefPubMedGoogle Scholar
  41. Holmquist G.P., Gao S. Somatic mutation theory, DNA repair rates, and the molecular epidemiology of p53 mutations.Mutat Res. 1997; 386:69-101.CrossRefPubMedGoogle Scholar
  42. Hussain S.P., Amstad P., Raja K., Sawyer M., Hofseth L., Shields P.G., Hewer A., Phillips D.H., Ryberg D., Haugen A., Harris C.C. Mutability of p53 hotspot codons to benzo(a)pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung. Cancer Res. 2001; 61:6350-6355.PubMedGoogle Scholar
  43. Hussain S.P., Hofseth L.J., Harris C.C. Radical causes of cancer. Nat Rev Cancer. 2003; 3:276-285.CrossRefPubMedGoogle Scholar
  44. Inga A., Cresta S., Monti P., Aprile A., Scott G., Abbondandolo A., Iggo R., Fronza G. Simple identification of dominant p53 mutants by a yeast functional assay. Carcinogenesis. 1997; 18:2019-2021.CrossRefPubMedGoogle Scholar
  45. Inga A., Scott G., Monti P., Aprile A., Abbondandolo A., Burns P.A., Fronza G. Ultraviolet-light induced p53 mutational spectrum in yeast is indistinguishable from p53 mutations in human skin cancer. Carcinogenesis. 1998; 19:741-746.CrossRefPubMedGoogle Scholar
  46. Jia L., Wang X.W., Harris C.C. Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer. 1999; 80:875-879.CrossRefPubMedGoogle Scholar
  47. Jonason A.S., Kunala S., Price G.J., Restifo R.J., Spinelli H.M., Persing J.A., Leffell D.J., Tarone R.E., Brash D.E. Frequent clones of p53-mutated keratinocytes in normal human skin [see comments]. Proc Natl Acad Sci U S A. 1996; 93:14025-14029.CrossRefPubMedGoogle Scholar
  48. Jones P.A., Rideout W.M., Shen J.C., Spruck C.H., Tsai Y.C. Methylation, mutation and cancer. Bioessays. 1992; 14:33-36.CrossRefPubMedGoogle Scholar
  49. Kao J.H., Chen D.S. Global control of hepatitis B virus infection. Lancet Infect Dis. 2002; 2:395-403.CrossRefPubMedGoogle Scholar
  50. Kato S., Han S.Y., Liu W., Otsuka K., Shibata H., Kanamaru R., Ishioka C. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 2003; 100:8424-8429.CrossRefPubMedGoogle Scholar
  51. Kumar S., Subramanian S. Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A. 2002; 99:803-808.CrossRefPubMedGoogle Scholar
  52. Kunkel T.A. DNA replication fidelity. J Biol Chem. 2004; 279:16895-16898.CrossRefPubMedGoogle Scholar
  53. Lee D.H., Pfeifer G.P. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J Biol Chem. 2003; 278:10314-10321.PubMedGoogle Scholar
  54. Lin J., Chen J., Elenbaas B., Levine A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 1994; 8:1235-1246.CrossRefPubMedGoogle Scholar
  55. Livneh Z. DNA damage control by novel DNA polymerases: translesion replication and mutagenesis. J Biol Chem. 2001; 276:25639-25642.CrossRefPubMedGoogle Scholar
  56. Loeb L.A. Cancer cells exhibit a mutator phenotype. Adv Cancer Res. 1998; 72:25-56.CrossRefPubMedGoogle Scholar
  57. Lunn R.M., Langlois R.G., Hsieh L.L., Thompson C.L., Bell D.A. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 1999; 59:2557-2561.PubMedGoogle Scholar
  58. Mace K., Aguilar F., Wang J.S., Vautravers P., Gomez-Lechon M., Gonzalez F.J., Groopman J., Harris C.C., Pfeifer A.M. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis. 1997; 18:1291-1297.CrossRefPubMedGoogle Scholar
  59. Mandard A.M., Hainaut P., Hollstein M. Genetic steps in the development of squamous cell carcinoma of the esophagus. Mutat Res. 2000; 462:335-342.CrossRefPubMedGoogle Scholar
  60. Martin A.C., Facchiano A.M., Cuff A.L., Hernandez-Boussard T., Olivier M., Hainaut P., Thornton J.M. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum Mutat. 2002; 19:149-164.CrossRefPubMedGoogle Scholar
  61. Miller J.A. Recent studies on the metabolic activation of chemical carcinogens. Cancer Res. 1994; 54:1879s-1881s.PubMedGoogle Scholar
  62. Montesano R., Hainaut P., Hall J. The use of biomarkers to study pathogenesis and mechanisms of cancer: oesophagus and skin cancer as models.IARC Sci Publ. 1997; 291-301.Google Scholar
  63. Olivier M., Eeles R., Hollstein M., Khan M.A., Harris C.C., Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002; 19:607-614.CrossRefPubMedGoogle Scholar
  64. Olivier M., Hussain S.P., Caron d.F., Hainaut P., Harris C.C. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer.IARC Sci Publ. 2004; 247-270.Google Scholar
  65. Ory K., Legros Y., Auguin C., Soussi T. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J. 1994; 13:3496-3504.PubMedGoogle Scholar
  66. Ozturk M. Genetic aspects of hepatocellular carcinogenesis. Semin Liver Dis. 1999; 19:235-242.CrossRefPubMedGoogle Scholar
  67. Parkin D.M., Bray F., Ferlay J., Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001; 94:153-156.CrossRefPubMedGoogle Scholar
  68. Petitjean A., Cavard C., Shi H., Tribollet V., Hainaut P., Caron de Fromentel C. The expression of TA and DNp63 are regulated by different mechanisms in liver cells. 2005; in press:Google Scholar
  69. Pfeifer G.P., Denissenko M.F., Olivier M., Tretyakova N., Hecht S.S., Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002; 21:7435-7451.CrossRefPubMedGoogle Scholar
  70. Pluquet O., Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett. 2001; 174:1-15.CrossRefPubMedGoogle Scholar
  71. Ponchel F., Puisieux A., Tabone E., Michot J.P., Froschl G., Morel A.P., Frebourg T., Fontaniere B., Oberhammer F., Ozturk M. Hepatocarcinoma-specific mutant p53-249ser induces mitotic activity but has no effect on transforming growth factor beta 1-mediated apoptosis. Cancer Res. 1994; 54:2064-2068.PubMedGoogle Scholar
  72. Puisieux A., Lim S., Groopman J., Ozturk M. Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res. 1991;51:6185-6189.PubMedGoogle Scholar
  73. Ren Z.P., Ahmadian A., Ponten F., Nister M., Berg C., Lundeberg J., Uhlen M., Ponten J. Benign clonal keratinocyte patches with p53 mutations show no genetic link to synchronous squamous cell precancer or cancer in human skin. Am J Pathol. 1997; 150:1791-1803.PubMedGoogle Scholar
  74. Ren Z.P., Hedrum A., Ponten F., Nister M., Ahmadian A., Lundeberg J., Uhlen M., Ponten J. Human epidermal cancer and accompanying precursors have identical p53 mutations different from p53 mutations in adjacent areas of clonally expanded non-neoplastic keratinocytes. Oncogene. 1996a; 12:765-773.PubMedGoogle Scholar
  75. Ren Z.P., Ponten F., Nister M., Ponten J. Two distinct p53 immunohistochemical patterns in human squamous-cell skin cancer, precursors and normal epidermis. Int J Cancer. 1996b; 69:174-179.CrossRefPubMedGoogle Scholar
  76. Rosenberg M.S., Subramanian S., Kumar S. Patterns of transitional mutation biases within and among mammalian genomes. Mol Biol Evol. 2003; 20:988-993.CrossRefPubMedGoogle Scholar
  77. Ross R.K., Yuan J.M., Yu M.C., Wogan G.N., Qian G.S., Tu J.T., Groopman J.D., Gao Y.T., Henderson B.E. Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet. 1992; 339:943-946.CrossRefPubMedGoogle Scholar
  78. Schmutte C., Yang A.S., Nguyen T.T., Beart R.W., Jones P.A. Mechanisms for the involvement of DNA methylation in colon carcinogenesis. Cancer Res. 1996; 56:2375-2381.PubMedGoogle Scholar
  79. Smela M.E., Currier S.S., Bailey E.A., Essigmann J.M. The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis. 2001; 22:535-545.CrossRefPubMedGoogle Scholar
  80. Smela M.E., Hamm M.L., Henderson P.T., Harris C.M., Harris T.M., Essigmann J.M. The aflatoxin B(1) formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2002; 99:6655-6660.CrossRefPubMedGoogle Scholar
  81. Stenson P.D., Ball E.V., Mort M., Phillips A.D., Shiel J.A., Thomas N.S., Abeysinghe S., Krawczak M., Cooper D.N. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003; 21:577-581.CrossRefPubMedGoogle Scholar
  82. Strano S., Fontemaggi G., Costanzo A., Rizzo M.G., Monti O., Baccarini A., Del Sal G., Levrero M., Sacchi A., Oren M., Blandino G. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem. 2002; 277:18817-18826.CrossRefPubMedGoogle Scholar
  83. Strano S., Munarriz E., Rossi M., Cristofanelli B., Shaul Y., Castagnoli L., Levine A.J., Sacchi A., Cesareni G., Oren M., Blandino G. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem. 2000; 275:29503-29512.CrossRefPubMedGoogle Scholar
  84. Strauss B.S. Silent and multiple mutations in p53 and the question of the hypermutability of tumors [published erratum appears in Carcinogenesis 1998 Jan;19(1):237]. Carcinogenesis. 1997; 18:1445-1452.CrossRefPubMedGoogle Scholar
  85. Tornaletti S., Pfeifer G.P. Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer [see comments]. Science. 1994; 263:1436-1438.CrossRefPubMedGoogle Scholar
  86. Tornaletti S., Pfeifer G.P. Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene. 1995; 10:1493-1499.PubMedGoogle Scholar
  87. Tornaletti S., Rozek D., Pfeifer G.P. The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer [published erratum appears in Oncogene 1993 Dec;8(12):3469]. Oncogene. 1993; 8:2051-2057.PubMedGoogle Scholar
  88. Turner P.C., Sylla A., Diallo M.S., Castegnaro J.J., Hall A.J., Wild C.P. The role of aflatoxins and hepatitis viruses in the etiopathogenesis of hepatocellular carcinoma: A basis for primary prevention in Guinea-Conakry, West Africa.J Gastroenterol Hepatol. 2002; 17 Suppl:S441-S448.CrossRefPubMedGoogle Scholar
  89. Vineis P., Caporaso N. Tobacco and cancer: epidemiology and the laboratory. Environ Health Perspect. 1995; 103:156-160.CrossRefPubMedGoogle Scholar
  90. Vrieling H., van Zeeland A.A., Mullenders L.H. Transcription coupled repair and its impact on mutagenesis. Mutat Res. 1998; 400:135-142.PubMedGoogle Scholar
  91. Waridel F., Estreicher A., Bron L., Flaman J.M., Fontolliet C., Monnier P., Frebourg T., Iggo R. Field cancerisation and polyclonal p53 mutation in the upper aero- digestive tract. Oncogene. 1997; 14:163-169.CrossRefPubMedGoogle Scholar
  92. Wild C.P., Hall A.J. Primary prevention of hepatocellular carcinoma in developing countries. Mutat Res. 2000; 462:381-393.CrossRefPubMedGoogle Scholar
  93. Wild C.P., Jiang Y.Z., Allen S.J., Jansen L.A., Hall A.J., Montesano R. Aflatoxin-albumin adducts in human sera from different regions of the world. Carcinogenesis. 1990; 11:2271-2274.CrossRefPubMedGoogle Scholar
  94. Wogan G.N., Hecht S.S., Felton J.S., Conney A.H., Loeb L.A. Environmental and chemical carcinogenesis. Semin Cancer Biol. 2004; 14:473-486.CrossRefPubMedGoogle Scholar
  95. Yoon J.H., Smith L.E., Feng Z., Tang M., Lee C.S., Pfeifer G.P. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res. 2001; 61:7110-7117.PubMedGoogle Scholar
  96. Zhang Y., Wu X., Guo D., Rechkoblit O., Geacintov N.E., Wang Z. Two-step error-prone bypass of the (+)- and (-)-trans-anti-BPDE-N2-dG adducts by human DNA polymerases eta and kappa. Mutat Res. 2002; 510:23-35.PubMedGoogle Scholar
  97. Ziegler A., Jonason A.S., Leffell D.J., Simon J.A., Sharma H.W., Kimmelman J., Remington L., Jacks T., Brash D.E. Sunburn and p53 in the onset of skin cancer [see comments]. Nature. 1994; 372:773-776.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hong Shi
    • 1
  • Florence Le Calvez
    • 1
  • Magali Olivier
    • 1
  • Pierre Hainaut
    • 1
  1. 1.International Agency for Research on Cancer, World Health OrganizationFrance

Personalised recommendations