ICAME 2003 pp 595-606 | Cite as

Surface and Interface Investigations by Nuclear Resonant Scattering with Standing Waves

  • M. A. Andreeva
Conference paper

Abstract

The main features of the reflectivity spectroscopy (“coherent spectroscopy”) in energy, time and angular scales are considered. They are the enhancement or suppression of different hyperfine contributions to the spectra, strong dependence of these effects from the order of the Bragg reflectivity and from the slight angular shifts in the vicinity of the Bragg maximum, phase shifts of the quantum beats in the time spectra, shift of the angular position of the delayed reflectivity maximum relative prompt Bragg peak. These effects are caused by the depth distribution of the resonant nuclei, standing wave creation in the reflecting multilayers or thin films and also by the unhomogeneity along the surface of the resonant nuclei with different hyperfine parameters. The simple explanation is presented on the bases of the kinematical approach of the reflectivity theory. Experimental results are discussed on the bases of the kinematical approach of the reflectivity theory.

Key words

nuclear resonant scattering Mössbauer reflectometry hyperfine interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rüffer, R., Gerdau, E., Grote, M., Hollatz, R., Röhlsberger, R., Rüter, H. D. and Sturhahn, W., Nucl. Instrum. Meth. Phys. Res. 303 (1991), 495.ADSCrossRefGoogle Scholar
  2. 2.
    Sturhahn, W. and Gerdau, E., Phys. Rev. B 49 (1994), 9285.ADSCrossRefGoogle Scholar
  3. 3.
    Rüffer, R. and Chumakov, A. I., Hyp. Interact. 97/98 (1996), 589.ADSCrossRefGoogle Scholar
  4. 4.
    Sturhahn, W., Alp, E. E., Toellner, T. S., Hession, P., Hu, M. and Sutter, J., Hyp. Interact. 113 (1998), 47.ADSCrossRefGoogle Scholar
  5. 5.
    Smirnov, G. V., Hyp. Interact. 123/124 (1999), 31.CrossRefGoogle Scholar
  6. 6.
    Siddons, D. P., Bergman, U. and Hastings, J. B., Hyp. Interact. 123/124 (1999), 681.CrossRefGoogle Scholar
  7. 7.
    Bernstein, S. and Campbell, E. C., Phys. Rev. 132 (1963), 1625.ADSCrossRefGoogle Scholar
  8. 8.
    Wagner, F. E., Z. Physik 210 (1968), 361.ADSCrossRefGoogle Scholar
  9. 9.
    Frost, J. C., Cowie, B. C. C., Chapman, S. N. and Marshall, J. P., Appl. Phys. Lett. 47 (1985), 581.ADSCrossRefGoogle Scholar
  10. 10.
    Irkaev, S. M., Andreeva, M. A., Semenov, V. G., Belozerskii, G. N. and Grishin, O. V., Nucl. Instrum. Meth. Phys. Res. B 74 (1993), 545, 554ADSCrossRefGoogle Scholar
  11. Irkaev, S. M., Andreeva, M. A., Semenov, V. G., Belozerskii, G. N. and Grishin, O. V., Nucl. Instrum. Meth. Phys. Res. 103 (1995), 351.ADSCrossRefGoogle Scholar
  12. 11.
    Andreeva, M. A., Irkaev, S. M. and Semenov, V. G., Hyp. Interact. 97/98 (1994), 605.ADSCrossRefGoogle Scholar
  13. 12.
    Baron, A. Q. R., Arthur, J., Ruby, S. L., Chumakov, A. I., Smirnov, G. V. and Brown, G. S., Phys. Rev. B 50 (1994), 10354.ADSCrossRefGoogle Scholar
  14. 13.
    Toellner, T. S., Sturhahn, W., Röhlsberger, R., Alp, E. E., Sowers, C. H. and Fullerton, E. E., Phys. Rev. Lett. 74 (1995), 3475.ADSCrossRefGoogle Scholar
  15. 14.
    Niesen, L., Mugarza, A., Rosu, M. F., Coehoorn, R., Jungblut, R. M., Roozeboom, F., Baron, A. Q. R., Chumakov, A. I. and Rüffer, R., Phys. Rev. B 58 (1998), 8590.ADSCrossRefGoogle Scholar
  16. 15.
    Carbone, C., Dallmeyer, A., Malagoli, M. C., Maiti, K., Wingbermühle, J., Eberhardt, W., Nagy, D. L., Bottyán, L., Deák, L., Szilágy, E. and Rüffer, R., ESRF Highlights, 1999, p. 60.Google Scholar
  17. 16.
    Röhlsberger, R., Hyp. Interact. 123/124 (1999), 455.Google Scholar
  18. 17.
    Bottyan, L., Dekoster, J., Deák, L., Baron, A. Q. R., Degroote, S., Moons, R., Nagy, D. L. and Langouche, G., Hyp. Interact. 113 (1998), 295.ADSCrossRefGoogle Scholar
  19. 18.
    Andreeva, M. A., Irkaev, S. M., Semenov, V. G., Prokhorov, K. A., Salashchenko, N. N., Chumakov, A. I. and Rüffer, R., J. Alloys and Compounds 286 (1999), 322.CrossRefGoogle Scholar
  20. 19.
    Nagy, D. L., Bottyán, L., Deák, L., Dekoster, J., Langouche, G., Semenov, V. G., Spiering, H. and Szilágy, E., In: M. Miglierini and D. Petridis (eds), Proc. Mössbauer Spectroscopy in Materials Science, Kluwer Academic Publishers, 1999, p. 323.CrossRefGoogle Scholar
  21. 20.
    Andreeva, M. A., Irkaev, S. M., Semenov, V. G., Prokhorov, K. A., Salashchenko, N. N., Chumakov, A. I. and Rüffer, R., Hyp. Interact. 126 (2000), 343.ADSCrossRefGoogle Scholar
  22. 21.
    Kalska, B., Häggström, L., Lindgren, B., Blomquist, P., Wäppling, R., Andreeva, M. A., Nikitenko, Yu. V., Proglyado, V. V., Aksenov, V. L., Semenov, V. G., Chumakov, A. I., Leupold, O. and Rüffer, R., Hyp. Interact. 136/137 (2001), 295.ADSCrossRefGoogle Scholar
  23. 22.
    Lindgren, B., Andreeva, M. A., Häggström, L., Kalska, B., Semenov, V. G., Chumakov, A. I., Leupold, O. and Rüffer, R., Hyp. Interact. 136/137 (2001), 439.ADSCrossRefGoogle Scholar
  24. 23.
    Andreeva, M. A., Semenov, V. G., Häggström, L., Lindgren, B., Kalska, B., Chumakov, A. I., Leupold, O., Rüffer, R., Prokhorov, K. A. and Salashchenko, N. N., The Physics of Metals and Metallography 91 (Suppl. 1) (2001), 22.Google Scholar
  25. 24.
    Andreeva, M. A., Semenov, V. G., Lindgren, B., Häggström, L., Kalska, B., Chumakov, A. I., Leupold, O., Rüffer, R., Prokhorov, R. R. and Salashchenko, N. N., Hyp. Interact. 141/142 (2002), 119.ADSCrossRefGoogle Scholar
  26. 25.
    Parratt, L. G., Phys. Rev. 95 (1954), 359.ADSCrossRefGoogle Scholar
  27. 26.
    Andreeva, M. A. and Rosete, C., Vestnik Moscovskogo Universiteta, Fizika 41 (1986), 65 (English transl. by Allerton Press, Inc.).Google Scholar
  28. 27.
    Röhlsberger, R. Hyp. Interact. 123/124 (1999), 301.CrossRefGoogle Scholar
  29. 28.
    Hamley, I. W. and Pedersen, J. S., J. Appl. Cryst. 27 (1994), 29.CrossRefGoogle Scholar
  30. 29.
    Andreeva, M. A. and Lindgren, B., In: M. Mashlan, M. Miglierini and P. Schaaf (eds), Material Research in Atomic Scale by Mössbauer Spectroscopy, NATO Science Series, II. Mathematics, Physics and Chemistry, Vol. 94, 2002, p. 217.Google Scholar
  31. 30.
    Andreeva, M. A. and Lindgren, B., Surface Investigations 1 (2003), 12 (in Russian).Google Scholar
  32. 31.
    Séve, L., Jaouen, N., Tonnerre, J. M., Raoux, D., Bartolome, F., Arend, M., Felsch, W., Rogalev, A., Goulon, J., Gautier, C. and Bérar, J. F., Phys. Rev. B 60 (1999), 9662.ADSCrossRefGoogle Scholar
  33. 32.
    Andreeva, M. A. and Lindgren, B., Nucl. Instrum. Meth. Phys. Res., in press.Google Scholar
  34. 33.
    Andreeva, M. A. and Lindgren, B., JETP Lett. 76 (2002), 704.ADSCrossRefGoogle Scholar
  35. 34.
    Röhlsberger, R., Thomas, H., Schlage, K., Burkel, E., Leupold, O. and Rüffer, R., Phys. Rev. Lett. 89 (2002), 237201.ADSCrossRefGoogle Scholar
  36. 35.
    Andreeva, M. A., Vdovichev, S. N., Nozdrin, Yu. N., Pestov, E. E., Salashchenko, N. N., Semenov, V. G., Lindgren, B., Häggström, L., Nordblad, P., Kalska, B., Leupold, O. and Rüffer, R., Izv. Ros. Acad. Nauk, Ser. Fiz.,in press.Google Scholar
  37. 36.
    Shinjo, T. and Keune, W., J. Magn. Magn. Mater. 200 (1999), 598.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • M. A. Andreeva
    • 1
  1. 1.Department of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations