Quantum Logic and the Unity of Science

  • John Woods
  • Kent A. Peacock
Part of the Logic, Epistemology, And The Unity Of Science book series (LEUS, volume 1)


This paper is an exploratory prolegomenon to the construction of a quantum logic that could shed some light on the thesis of the unity of science. We attempt to take account of the following factors, among others: the difficulty of saying just what a logic is, the startlingly simplequeerness of quantum mechanics from the classical point of view, the consequences of the breakdown of bivalence and individuation in quantum mechanics, and the implications of recent work in quantum computation for quantum logic. We tentatively endorse modal interpretations of quantum mechanics, and suggest that quantum computation points to ways in which quantum logic could be extended beyond the traditional Birkhoff-von Neumann lattice theoretic approach.


Quantum Computation Classical Logic Quantum Logic Logical Truth Bohmian Mechanics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A. R. and N. D. Belnap: 1975, Entailment: The Logic of Relevance and Necessity, Vol. I, Princeton, Princeton University Press.Google Scholar
  2. Barwise, J.: 1977, Handbook of Mathematical Logic, Amsterdam, North Holland.Google Scholar
  3. Bell, J. L.: 1986, ‘A New Approach to Quantum Logic’, British Journal for the Philosophy of Science 37, 83–99.Google Scholar
  4. Bell, J. S.: 1987, Speakable and Unspeakable in Quantum Mechanics, Cambridge, Cambridge University Press.Google Scholar
  5. Beltrametti, E. G. and B. C. van Fraassen (eds.): 1981, Current Issues in Quantum Logic, New York, Plenum.Google Scholar
  6. Benford, Greg: 1998, Cosm, New York, Avon Books.Google Scholar
  7. Bohm, David, and Basil Hiley: 1993, The Undivided Universe: An Ontological Interpretation of Quantum Theory, London, Routledge.Google Scholar
  8. Birkhoff, G. and J. von Neumann: 1936, ‘The Logic of Quantum Mechanics’, Annals of Mathematics 37, 823–843; reprinted in Hooker (ed.) 1975, pp. 1–26.CrossRefGoogle Scholar
  9. Bohm, D. and B. J. Hiley: 1993, The Undivided Universe: An Ontological Interpretation of Quantum Theory, London and New York, Routledge.Google Scholar
  10. Brown, Bryson: 1992, ‘Old Quantum Theory: A Paraconsistent Approach’, in Proceedings of the Biennial Meeting of the Philosophy of Science AssociationVol. II, pp. 397–411.Google Scholar
  11. Bub, J.: 1997, Interpreting the Quantum World, Cambridge, Cambridge University Press.Google Scholar
  12. Catellani, E. (ed.): 1998, Interpreting Bodies: Classical and Quantum Objects in Modern Physics, Princeton, Princeton University Press.Google Scholar
  13. Cushing, J. T., A. Fine and S. Goldstein (eds.): 1996, Bohmian Mechanics and Quantum Theory: An Appraisal, Dordrecht, Kluwer.Google Scholar
  14. della Chiara, M. L.: 1986, in Gabbay and Guenther (eds.), Quantum Logic, pp. 427–467.Google Scholar
  15. Deutsch, D.: 1985. ‘Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer’, Proceedings of the Royal Society of London A 400, 97–117.CrossRefGoogle Scholar
  16. Deutsch, David: 1997, The Fabric of Reality, London, Penguin Books.Google Scholar
  17. Deutsch, D., A. Ekert and R. Lupacchini: 1999, ‘Machines, Logic, and Quantum Physics’,
  18. de Witt, B. S. and N. Graham (eds.): 1973, The Many-Worlds Interpretation of Quantum Mechanics, Princeton, Princeton University Press.Google Scholar
  19. Dickson, M.: 2001, ‘Quantum Logic is Alive ∧ (It is True ∨ It is False)’, Philosophy of Science 68, S274–S287.CrossRefGoogle Scholar
  20. Dürr, D., S. Goldstein and N. Zanghì: 1995, ‘Quantum Physics without Quantum Philosophy’, Studies in the History and Philosophy of Modern Physics 26(2), 137–149.CrossRefGoogle Scholar
  21. Engesser, K. and D. Gabbay: forthcoming, ‘Quantum Logic, Hilbert Space, and Revision Theory’.Google Scholar
  22. Everett, H.: 1957, ‘ “Relative State” Formulation of Quantum Mechanics’, Physical Review 29(3), 454–462.Google Scholar
  23. Feynman, R. P., R. B. Leighton and M. Sands: 1965, The Feynman Lectures on PhysicsVol. III, Reading, MA, Addison-Wesley.Google Scholar
  24. Gabbay, D. and F. Guenther (eds.): 1986, Handbook of Philosophical Logic, Vol. III: Alternatives to Classical Logic, Dordrecht, Kluwer.Google Scholar
  25. Gabbay, D. and J. Woods: 2001, ‘The New Logic’, Logic Journal of the IGPL 9, 157–190.Google Scholar
  26. Gibbins, P.: 1987, Particles and Paradoxes: The Limitations of Quantum Logic, Cambridge, Cambridge University Press.Google Scholar
  27. Hooker, C. A. (ed.): 1975, The Logico-Algebraic Approach to Quantum Mechanics, Vol. I, Dordrecht, Reidel.Google Scholar
  28. Hughes, R. I. G.: 1981, ‘Quantum Logic’, Scientific American 245(4), 202–213.CrossRefGoogle Scholar
  29. Hughes, R. I. G.: 1989, The Structure and Interpretation of Quantum Mechanics, Cambridge, MA, Harvard University Press.Google Scholar
  30. Kleene, S.: 1967, Mathematical Logic, New York, John Wiley and Sons.Google Scholar
  31. Nielsen, M. A. and I. L. Chuang: Quantum Computation and Quantum Information, Cambridge, Cambridge University Press.Google Scholar
  32. Penrose, R. and C. Isham (eds.): 1986, Quantum Processes in Space and Time, Oxford, Clarendon Press.Google Scholar
  33. Pitowsky, I.: 1984. ‘Goerge Boole's “Conditions of Possible Experience” and the Quantum Puzzle’, British Journal for the Philosophy of Science 45, 95–125.CrossRefGoogle Scholar
  34. Pitowsky, I.: 1989, Quantum Probability – Quantum Logic, Berlin, Springer-Verlag.Google Scholar
  35. Putnam, Hilary: 1975a, ‘A Philosopher Looks at Quantum Mechanics’, in Mathematics, Matter and Method, Cambridge, Cambridge University Press, pp. 130–158.Google Scholar
  36. Putnam, Hilary: 1975b, ‘The Logic of Quantum Mechanics’, in Mathematics, Matter and Method, Cambridge, Cambridge University Press, pp. 174–197; first published as ‘Is logic Empirical?’, in R. Cohen and M. Wartofsky (eds.), Boston Studies in the Philosophy of Science 5, Dordrecht, D. Reidel, 1968.Google Scholar
  37. Rescher, N.: 1968, Topics in Philosophical Logic, Dordrecht, D. Reidel.Google Scholar
  38. Schrödinger, E.: 1983 (1935), ‘The Present Situation in Quantum Mechanics’, translation by J. D. Trimmer of ‘Die gegenwärtige Situation in der Quantenmechanik’, Naturwissenschaften 23, 807–812, 823–828, 844–849; reprinted in Wheeler and Zurek (eds.): 1983, pp. 152–167.CrossRefGoogle Scholar
  39. Shimony, A.: 1986, in Penrose and Isham (eds.), Events and Processes in the Quantum World, pp. 182–203.Google Scholar
  40. Shoenfield, J. R.: 1967, Mathematical Logic, Reading, MA, Addison-Wesley.Google Scholar
  41. Teller, P.: 1998, in Castellani (ed.), Quantum Mechanics and Haecceities, pp. 114–141.Google Scholar
  42. Tennant, N.: 1993, Autologic, Edinburgh, Edinburgh University Press.Google Scholar
  43. van Fraassen, B. C.: 1981, in Beltrametti and van Fraassen (eds.), A Modal Interpretation of Quantum Mechanics, pp. 229–258.Google Scholar
  44. van Fraassen, B. C.: 1988, in Castellani (ed.), The Problem of Indistinguishable Particles, pp. 73–92.Google Scholar
  45. Wheeler, J. A. and W. H. Zurek (eds.): 1983, Quantum Theory and Measurement, Princeton, Princeton University Press.Google Scholar
  46. Wilson, M. D. (ed.): 1969, The Essential Descartes, New York, New American Library.Google Scholar
  47. Woods, J.: 2004, The Death of Argument: Fallacies in Agent-Based Reasoning, Dordrecht and Boston, Kluwer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • John Woods
    • 1
  • Kent A. Peacock
    • 2
  1. 1.The Abductive Systems GroupThe University of British Columbia, 1866 Main Mall, E370 Buchanan BuildingVancouverCanada
  2. 2.Department of Philosophy University of Lethbridge4401 University DriveLethbridgeCanada

Personalised recommendations