Skip to main content

Calibration-Free High-Resolution Low-Power Algorithmic and Pipelined AD Conversion

  • Chapter
Analog Circuit Design

Abstract

A novel implementation for algorithmic and pipelined ADCs is presented in this paper. A floating voltage hold buffer is proposed which enables the accurate addition of signal voltages without requiring precisely matching and linear components. A new 1.5-bit stage is presented based on the floating hold buffer in which voltage multiplication is replaced by voltage addition. An experimental 12-bit 3.3 MS/s algorithmic ADC in 0.25μm standard CMOS for a 2V application is described. It occupies O.15mm2 of die area and dissipates 5.5mW. The power and area FOMs are well below those previously reported for 1.5-bit algorithmic ADC stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Schmid, Electronic Analog/Digital Conversions, Van Nostrand-Reinhold, p.195, 1970.

    Google Scholar 

  2. Robert H. McCharles, Vikram A. Saletore, William C. Black, David A. Hodges “An Algorithmic Analog-to-Digital Converter”, IEEE ISSCC, SECTION IX, pp. 96–97, 1977.

    Google Scholar 

  3. Y. Ren, B. H. Leung, Y-M. Lin, “A Mismatch-Independent DNL Pipelined Analog-to-Digital Converter,” IEEE Trans. Circuits and Systems II: Proc. Analog and Digital Processing, vol. 46, no. 5, pp. 517–526, May, 1999.

    Google Scholar 

  4. Thomas B. Cho and Paul R. Gray, “A 10 b, 20 Msample/s, 35mW Pipeline A/D Converter,” IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 166–172, Mar, 1995.

    Article  Google Scholar 

  5. David W. Cline and Paul R. Gray, “A Power Optimized 13-b 5 Msamples/s Pipelined Analog-to-Digital Converter in 1.2 μn CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 294–303, Mar, 1996.

    Article  Google Scholar 

  6. Bang-Sup Song, Michael F. Tompsett, Kadaba R. Lakshmikumar “A 12-bit 1-Msample/s Capacitor Error-Averaging Pipelined A/D Converter. ” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1324–1332, Dec, 1988.

    Article  Google Scholar 

  7. Lauri Sumenen, Mikko Waltari, Kari A. I. Halonen “A 10-b 200-MS/s CMOS Parallel Pipeline A/D Converter” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1048–1055, July 2001.

    Article  Google Scholar 

  8. Hae-Seung Lee, “A 12-b 600 ks/s Digitally Self-Calibrated Pipelined Algorithmic ADC,” IEEE J. Solid State Circuits, vol. 29, no. 4, pp. 509–515, Apr. 1994.

    Article  Google Scholar 

  9. Shang-Yuan Chuang, Terry L. Sculley “A Digitally Self-Calibrating 14-bit 10-MHz CMOS Pipelined A/D Converter” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 674–683, June 2002.

    Article  Google Scholar 

  10. Krishnaswami Nagaraj “Efficient Circuit Configurations for Algorithmic Analog to Digital Converters”, IEEE Trans. Circuits and Systems II: Proc. Analog and Digital Processing, Vol.40, No.12, pp.777–785, Dec. 1993.

    Google Scholar 

  11. Stephen H. Lewis and Paul Gray, “A Pipelined 5-Msample/s 9-bit Analog-toDigital Converter.” IEEE J. Solid-State Circuits, vol. SC-22, no. 6, pp. 954–961, Dec. 1987.

    Article  Google Scholar 

  12. W. Yang, D. Kelly, I. Mehr, M. Sayuk, L. Singer, “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input”, IEEE J. Solid State Circuits, vol. 36, no. 12, pp. 1931–1936, Dec, 2001.

    Article  Google Scholar 

  13. Stephen H. Lewis, “Optimizing the Stage Resolution in Pipelined, Multstage, Analog-to-Digital Converters for Video Rate Applications,” IEEE Trans. Circuits and Systems II: Proc. Analog and Digital Processing, vol. 39, no. 8, pp. 516–523, Aug, 1992.

    Google Scholar 

  14. Andrew M. Abo and Paul R. Gray, “A 1.5-V, 10-bit, 14.3 MS/s CMOS Pipeline Analog-to-Digital Converter,” IEEE J. Solid State Circuits, vol. 34, no. 5, pp. 599–606, May, 1999.

    Article  Google Scholar 

  15. P. J. Quinn, K. van Hartingsveldt, A.H.M. van Roermund, “A 10.7-MHz CMOS SC Radio IF Filter Using Orthogonal Hardware Modulation,” IEEE J. SolidState Circuits, vol. 35, no. 12, pp. 1865–1876, Dec, 2000.

    Article  Google Scholar 

  16. Douglas Brooks, “Differential Signals, The Differential Difference !”, Printed Circuit Design, CMP Publication, May 2001.

    Google Scholar 

  17. Klaas Bult and Govert J. G. M. Geelen “A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain”IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1379–1384, Dec. 1990.

    Article  Google Scholar 

  18. O. Erdogan, P. J. Hurst, S. H. Lewis, “A 12-b Digital-Background-Calibrated Algorithmic ADC with -90-dB THD”, IEEE J. Solid State Circuits, vol. 34, no. 12, pp. 1812–1820, Dec, 2001.

    Article  Google Scholar 

  19. Shafiq M. Jamal, Diahong Fu, Nick C.-J. Chang, Paul J. Hurst, Stephen H. Lewis “A 10-b 120-Msample/s Time-Interleaved Analog-to-Digital Converter With Digital Background Calibration.” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1618–1627, Dec. 2002.

    Article  Google Scholar 

  20. Iuri Mehr and Larry Singer “A 55-mW, 10-bit, 40-MSamples/s Nyquist-Rate CMOS DC” AIEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 318–324, March 2000.

    Article  Google Scholar 

  21. Myung-Jun Choe, Bang-Sup Song, Kantilal Barcania “An 8-b 100-MSample/s CMOS Pipelined Folding ADC” IEEE J. Solid-State Circuits, vol. 36, no. 2, pp. 184–194, Feb. 2001.

    Article  Google Scholar 

  22. Jun Ming, Stephen Lewis “An 8-bit 80-Msample/s Pipelined Analog-to-Digital Converter With Background Calibration” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1489–1497, Oct. 2001.

    Article  Google Scholar 

  23. Hendrik van der Ploeg, Gian Hoogzaad, Henk A. H. Termeer, Maarten Vertregt“A 2.5-V 12-b 54-Msample/s 0.25-um CMOS ADC in 1-mm2 With Mixed-Signal Chopping and Calibration” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1859–1867, Dec. 2001.

    Article  Google Scholar 

  24. Ming-Huang Liu and Shen Iuan Liu “An 8-bit 10MS/s Folding and Interpolating ADC Using the Continuous-Time Auto-Zero Technique” IEEE J. SolidState Circuits, vol. 36, no. 1, pp. 122–128, Jan 2001.

    Article  Google Scholar 

  25. Myung-Jun Choe, Bang-Sup Song, Kantilal Barcania “A 13-b 40-MSamples/s CMOS Pipelined Folding ADC with Background Offset Trimming” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1781–1790, Dec. 2000.

    Article  Google Scholar 

  26. Ion E. Opris, Bill C. Wong and Sing W. Chin “A Pipeline A/D Converter Architecture with Low DNL” IEEE J. Solid-State Circuits, vol. 36, no. 2, pp. 281–285, Feb. 2000.

    Article  Google Scholar 

  27. Siamak Mortezapour and Edward Lee, “A 1-V, 8-bit Successive Approximation ADC in Standard CMOS Process,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 642–646, Apr 2000.

    Article  Google Scholar 

  28. Michael Scott, Bernhard Boser and Kristofer Pister, “An Ultralow-Energy ADC for Smart Dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123–1129, July 2003.

    Article  Google Scholar 

  29. Boris Murmann and Bernhard Boser, “A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040–2049, Dec 2003.

    Article  Google Scholar 

  30. Patrick Quinn and Maxim Pribytko, “Capacitor Matching Insensitive 12-bit 3.3 MS/s Algorithmic ADC in 0.25µm CMOS,” in IEEE 2003 Proc. Custom Integrated Circuits Conf., San Jose, Sept. 2003, pp. 425–428.

    Google Scholar 

  31. Maxim Pribytko and Patrick Quinn, “A CMOS Single-Ended OTA With High CMRR,” in Proc. 29th Eur. Solid-State Circuits Conf., Estoril, Portugal, Sept. 2003, pp. 293–296.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quinn, P.J., Pribytko, M.P., van Roermund, A.H.M. (2004). Calibration-Free High-Resolution Low-Power Algorithmic and Pipelined AD Conversion. In: Huijsing, J.H., Steyaert, M., van Roermund, A. (eds) Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-2805-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2805-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5253-0

  • Online ISBN: 978-1-4020-2805-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics