Advertisement

The Cassini Cosmic Dust Analyzer

  • R. SramaEmail author
  • T. J. Ahrens
  • N. Altobelli
  • S. Auer
  • J. G. Bradley
  • M. Burton
  • V. V. Dikarev
  • T. Economou
  • H. Fechtig
  • M. Görlich
  • M. Grande
  • A. Graps
  • E. Grün
  • O. Havnes
  • S. Helfert
  • M. Horanyi
  • E. Igenbergs
  • E. K. Jessberger
  • T. V. Johnson
  • S. Kempf
  • A. V. Krivov
  • H. Krüger
  • A. Mocker-Ahlreep
  • G. Moragas-Klostermeyer
  • P. Lamy
  • M. Landgraf
  • D. Linkert
  • G. Linkert
  • F. Lura
  • J. A. M. McDonnell
  • D. Möhlmann
  • G. E. Morfill
  • M. Müller
  • M. Roy
  • G. Schäfer
  • G. Schlotzhauer
  • G. H. Schwehm
  • F. Spahn
  • M. Stübig
  • J. Svestka
  • V. Tschernjawski
  • A. J. Tuzzolino
  • R. Wäsch
  • H. A. Zook
Chapter

Abstract

The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the jovian and satumian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.

The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.

Keywords

CDA Cassini dust sensor E-ring interplanetary dust 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. and Grevesse, E.: 1989, Cosmochim. Acta 53, 197–214.ADSGoogle Scholar
  2. Arndt, P., Bohsung, J., Maetz, M., and Jessberger, E. K.: 1996, Meteoritics Planet. Sci. 31, 817–833.ADSGoogle Scholar
  3. Auer, S.: 1975, Rev. Sci. Instrum. 46(2), 127–235.ADSGoogle Scholar
  4. Auer, S., Grün, E., Srama, R., Kempf, S., and Auer, R.: Plan. Space Sci. 50(7/8), 773–779.Google Scholar
  5. Baggaley, W. J. and Galligan, D. R: 1997, Plan. Space Sci. 45(7), 865–868.ADSGoogle Scholar
  6. Bradley, J. G., Grün, E., and Srama, R.: 1996, The Cosmic Dust Analyzer for Cassini, Vol. 2803,5–6 August, Proceedings of SPIE, Denver.Google Scholar
  7. Berg, O. E. and Richardson, E E: 1968, Rev. Sci. Instrum. 40, 1333.ADSGoogle Scholar
  8. Bradley, J. R: 1988, Cosmochim. Acta 52, 889–900.ADSGoogle Scholar
  9. Brownlee, D. E.: 1985, Ann. Rev. Earth Planet. Sci. 13, 147–173.ADSGoogle Scholar
  10. Burns, J. A., Lamy, Ph. L., and Soter S.: 1979, Icarus 40, 1–48.ADSGoogle Scholar
  11. Bus, S. J., Bowell, E., Harris, A. W., and Hewitt, A. V.: 1989, Icarus 77, 223–238.ADSGoogle Scholar
  12. Colwell, J. E., Horanyi, M., and Grün, E.: 1998, Am. Inst. Phys. Conf Proc. 446, 299–306.ADSGoogle Scholar
  13. Cuzzi, J. N. and Estrada, R R.: 1998, Icarus 132, 1–35.ADSGoogle Scholar
  14. Dietzel, H., Eichhorn, G., Fechtig, H., Grün, E., Hoffman, H.-J., and Kissel, J.: 1973, J. Phys. (E) Sci. Instrum. 6, 209–217.ADSGoogle Scholar
  15. Dikarev, V. V.: 1999, Astron. Astrophys. 346, 1011–1019.ADSGoogle Scholar
  16. Dikarev, V. and Grün, E.: 2002, Astron. Astrophys. 383(1), 302–308.ADSGoogle Scholar
  17. Dikarev, V. V. and Krivov, A. V.: 1998, Solar Syst. Res. 32(2), 128–143.ADSGoogle Scholar
  18. Goertz, C. K. and Morfill, G.: 1983, Icarus 53, 219–229.ADSGoogle Scholar
  19. Goertz, C. K. and Morfill, G. E.: 1988, Icarus 74, 3815.Google Scholar
  20. Goldsworthy, B. J., Burchell, M. J., Cole, M. J., Green, S. F., Leese, M. R., McBride, N., McDonnell, J. A. M., Müller, M., Grün, E., Srama, R., Armes, S. R, and Khan, M. A.: 2002, Adv. Space Res. 29(8), 1139–1144.ADSGoogle Scholar
  21. Göller, J. R. and Grün, E.: 1989, Planet. Space Sci. 37(10), 1197–1206.Google Scholar
  22. Graps, A. L., Grün, E., Svedhem, H., Krüger, H., Horányi, M., Heck, A., and Lammers, S.: 2000, Nature 405, 48–50.ADSGoogle Scholar
  23. Grün, E., Baguhl, M., Divine, N., Fechtig, H., Hamilton, D. R, Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Riemann, R., Schwehm, G., Siddique, N., Staubach, R, and Zook, H. A.: 1995, Planet. Space Sci. 43(8), 971–999.ADSGoogle Scholar
  24. Grün, E., Baguhl, M., Hamilton, D. R, Riemann, R., Zook, H. A., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horanyi, M., Khurana, K. K., Kissel, J., Kivelson, M., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfll, G. E., Polanskey, C., Schwehm, G., and Srama, R.: 1996, Nature 381, 395–398.ADSGoogle Scholar
  25. Grün, E., Fechtig, H., Giese, R. H., Kissel, J., Linkert, D., Maas, D., McDonnell, J. A. M., Morfll, G. E., Schwehm, G., and Zook, H. A.: 1992, Astron. Astrophys. Suppl. Ser 92, 411–423.ADSGoogle Scholar
  26. Grün, E., Fechtig, H., Giese, R. H., Kissel, J., Linkert, D., McDonnell, J. A. M., Morfll, G. E., Schwehm, G., and Zook, H. A.: 1983, in: Wenzel, K. P., Marsdon, R. G., and Battrick, B. (eds.), The ISPM Dust Experiment in The International Solar Polar Mission — Its Scientific Investigations, ESA SP-1050, pp. 227–241.Google Scholar
  27. Grün, E., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Morfll, G. E., and Zook, H.: 1992, Space Sci. Rev. 60, 317–340.ADSGoogle Scholar
  28. Grün, E., Hamilton, D. P., Riemann, R., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Heck, A., Horanyi, M., Kissel, J., Krüger, H., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfll, G. E., Polanskey, C., Schwehm, G., Srama, R., and Zook, H. A.: 1996, Science 274, 399–401.ADSGoogle Scholar
  29. Grün, E., Krüger, H., Dermott, S., Fechtig, H., Graps, A., Gustafson, B. A., Hamilton, D. P., Hanner, M. S., Heck, A., Horanyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfll, G. E., Polanskey, C., Schwehm, G., Srama, R., and Zook, H. A.: 1997, 24, 2171–2174.Google Scholar
  30. Grün, E., Krüger, H., Graps, A., Hamilton, D. P., Heck, A., Linkert, G., Zook, H. A., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horányi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Mann, I., McDonnell, J. A. M., Morfll, G. E., Polanskey, C., Schwehm, G., and Srama, R.: 1998, J. Geophys. Res.-Planets. 103(E9), 20011–20022.ADSGoogle Scholar
  31. Grün, E. and Landgraf, M.: 2000, J. Geophys. Res. 105(A5), 10291–10297.ADSGoogle Scholar
  32. Grün, E., Morfll, G. E., and Mendis, D. A.: 1984, in: Greenberg, R., and Brahic, A. (eds.), DustMagnetospere Interactions in “Planetary Rings”, University of Arizona Press, Tuscon, pp. 275–332.Google Scholar
  33. Grün, E., Morfll, G., Terrile, R. J., Johnson, T. V., and Schwehm, G.: 1983, Icarus 54, 227–252.ADSGoogle Scholar
  34. Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R., Hanner, M. S., Horanyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfll, G. E., Phillips, J. L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A.: 1993, Nature 362, 428–430.ADSGoogle Scholar
  35. Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H.: 1985, Icarus 62, 244–272.ADSGoogle Scholar
  36. Gurnett, D. A., Ansher, J. A., Kurth, W. S., and Granroth, L. J.: 1997, Geophys. Res. Lett. 24, 3125ff.ADSGoogle Scholar
  37. Gurnett, D. A., Grün, E., Gallagher, D., Kurth, W. S., and Scarf, F. L.: 1983, Icarus 53, 236–254.ADSGoogle Scholar
  38. Haff, P. K., Eviatar, A., and Siscoe, G. L.: 1983, Icarus 56, 426.ADSGoogle Scholar
  39. Hamilton, D. P. and Burns, J. A.: 1993, Nature 364, 695–699.ADSGoogle Scholar
  40. Hamilton, D. P. and Burns, J. A.: 1994, Science 264, 550–553.ADSGoogle Scholar
  41. Hanner, M. S., Sparrow, J. G., Weinberg, J. L., and Beeson, D. E.: 1976, Pioneer 10 observations of zodiacal light brightness near the ecliptic: Changes with heliocentric distance, in: Elsasser, H., and Fechtig, H. (eds.), Interplanetary Dust and Zodiacal Light, Lecture Notes in Physics, Vol. 48, Springer-Verlag, New York, pp. 29–35.Google Scholar
  42. Hashimov, N. M. and Tarakanov, V. L.: 1982, Komety i Meteory 32, 3–9 (in Russian).ADSGoogle Scholar
  43. Havnes, O.: 1984, Adv. Space Res. 4(9), 75–83.ADSGoogle Scholar
  44. Havnes, O., Goertz, C. K., Morfll, G. E., Grün, E., and Ip, W.: 1987, J. Geophys. Res. 92, 2281.ADSGoogle Scholar
  45. Havnes, O. and Morfill, G. E.: 1984, Adv. Space Res. 4, 85.ADSGoogle Scholar
  46. Hoffmann, H.-J., Fechtig, H., Grün, E., and Kissel, J.: 1975, Plant. Space Sci. 23, 985–991.ADSGoogle Scholar
  47. Horanyi, M.: 2000, Phys. Plasmas 7, 3847–3850.ADSGoogle Scholar
  48. Horanyi, M., Morfll, G. E., and Grün, E.: 1993, Nature 363, 144–146.ADSGoogle Scholar
  49. Horanyi, M., Morfill, G. E., and Grün, E.: 1993, The dusty ballerina skirt of jupitor. Jour Geophys. Res. 98, 21245–21251.ADSGoogle Scholar
  50. Howard, J. and Horanyi, M.: 2001, Geophys. Res. Lett. 28, 1907–1911.ADSGoogle Scholar
  51. Humes, D. H.: 1980, J. Geophys. Res. 85, 5841–5852.ADSGoogle Scholar
  52. Humes, D. H., Alvarez, J. M., O’Neal, R. L., Kinard, W. H.: 1974, J. Geophys. Res. 79(25), 3677–3684.ADSGoogle Scholar
  53. Jackson, A. A. and Zook, H. A.: 1989, Nature 337, 629–631.ADSGoogle Scholar
  54. Jaffe, L. D. and Herrell, L. M.: 1997, J. Spacecraft Rockets 34(4), 509.ADSGoogle Scholar
  55. Jessberger, E. K.: 1999, On the elemental, isotopic and mineralogical ingredients of ROCKY cometary particulates, in: Altwegg, K., Ehrenfreund, P., Geiss, J., and Huebner, W. (eds.), Proceedings of the Origin and Composition of Cometary Materials, Space Science Series of ISSI, Kluwer Academic Publishers, pp. 91–97.Google Scholar
  56. Jessberger, E. K., Bohsung, J., Chakaveh, S., and Traxel, K.: 1992, Earth Planet. Sci. Lett. 112, 91–99.ADSGoogle Scholar
  57. Jessberger, E. K., Christoforidis, A., and Kissel, J.: 1988, Nature 332, 691–695.ADSGoogle Scholar
  58. Jessberger, E. K., Stephan, T., Rost, D., Arndt, P., Maetz, M., Stadermann, E J., Brownlee, D. E., Bradley, J., and Kurat, G.: 2001, Properties of interplanetary dust: Information from collected samples, in: Dermott, S. E, Fechtig, H., Grün, E., and Gustafson, B. A. S. (eds.), Interplanetary Dust, Springer, Heidelberg, pp. 253–294.Google Scholar
  59. Jessberger, E. K. and Wallenwein, R.: 1986, Adv. Space Res. 6, 5–8.ADSGoogle Scholar
  60. Johnson, R. E., Pospieszalska, M. K., Sittler, E. C., Jr., Cheng, A. F., Lanzerotti, L. J., and Sievka, E. M.: 1989, Icarus 77, 311.ADSGoogle Scholar
  61. Jyoti, G., Gupta, S. C., Ahrens, T. J., Kossakovski, D., and Beauchamp, J. L.: 1999, in: Furnish, M. D. (ed.), Mass Spectrometer Calibration of Cosmic Dust Analyzer, Shock Compression of Condensed Matter. Google Scholar
  62. Jyoti, G., Gupta, S. C., Ahrens, T. J., Kossakovski, D., and Beauchamp, J. L.: 1999, Int. J. Impact Eng. 23, 401–408.Google Scholar
  63. Kissel, J., Fechtig, H., Grün, E., Igenbergs, E. B., Jessberger, E. K., McDonnell, J. A. M., Morfill, G. E., Schwehm, G. H., and Zook, H. A.: 1986, Nature 321, 336–338.ADSGoogle Scholar
  64. Krivov, A. V. and Banaszkiewicz, M.: 2001, Plan. Space Sci. 49(13), 1265–1279.ADSGoogle Scholar
  65. Krivov, A. V., Dikarev, V. V., Sremcevic, M., and Kholshevnikov, K. V.: 2001, Dust Clouds of Saturnian Outer Satellites: Guidelines for Cassini Dust Instrument, white paper.Google Scholar
  66. Krüger, H., Krivov, A. V., and Grün, E.: 2000, Plant. Space Sci. 48(15), 1457–1471.ADSGoogle Scholar
  67. Krivov, A. V., Krüger, H., and Grün, E.: 2002, J. Geophys. Res. 107(E1), 2–1–13.Google Scholar
  68. Lamy, P. L., Lefevre, J., Millet, J., and Lafon, J. P.: 1985, Electrostatic charge of interplanetary dust grains: New results, in: Giese, R. H., and Lamy, P. (eds.), Properties and Interactions of Interplanetary Dust, D. Reidel Publishing Co., Dordrecht, pp. 335–339.Google Scholar
  69. Landgraf, M., Augustsson, K., Grün, E., and Gustafson, B. A. S.: 1999, Science 286, 5448, 2319–2322.ADSGoogle Scholar
  70. Landgraf, M., Baggeley, W. J., Grün, E., Krüger, H., and Linkert, G.: 2000, J. Geophys. Res. 105(A5), 10343–10352.ADSGoogle Scholar
  71. Landgraf, M., Liou, J.-C., Zook, H. A., and Grün, E.: 2002, Astron. J. 123 (5), 2857–2861.ADSGoogle Scholar
  72. Leinert, C. and Grün, E.: 1990, in: Schwenn, R., and Marsch, E. (eds.), Interplanetary Dust in Physics and Chemistry in Space, Springer, Heidelberg, pp. 207–275.Google Scholar
  73. Leinert, C., Richter, I., Pitz, E., and Planck, B.: 1981, Astron. Astrophys. 103, 177–188.ADSGoogle Scholar
  74. Low, E J., Beintema, D. A., Gautier, T. N., Gillette, F. C., Beichman, C. A., Neugebauer, G., Young, E., Aumann, H. H., Boggess, N., Emerson, J. P., Habing, H. J., Hauser, M. G., Houck, J. R., Rowan-Robinson, M., Soifer, B. T., Walker, R. G., and Wesselius, P. R.: 1984, Astrophys. J. 278, L19–L22.ADSGoogle Scholar
  75. McDonnell, J. A. M.: 1978, Microparticle studies for space instrumentation, in: McDonnell, J. A. M. (ed.), Cosmic Dust, Wiley and Sons, New York, p. 337.Google Scholar
  76. McDonnell, J. A. M., Berg, O. E., and Richardson, F. E: 1975, Planet. Space Sci. 23, 205–214.ADSGoogle Scholar
  77. Melandso, F. and Havnes, O.: 1991, J. Geophys. Res. 96(A4), 5837–5845.ADSGoogle Scholar
  78. Mendis, D. A., Hill, I. R., Houpis, H. L. F., and Whipple, E. C., 1981, Astrophys. J. 249, 787–797.ADSGoogle Scholar
  79. Mendis, D. A., Hill, I. R., Ip, W.-H., Goertz, C. K., and Grün, E.: 1984, Electrodynamic processes in the ring system of saturn, in: Gehrels, T., and Matthews, M. S. (eds.), Saturn, University of Arizona Press, Tuscon, p. 546.Google Scholar
  80. Morfill, G. E., Grün, E., and Leinert, C.: 1986, The interaction of solid particles with the interplanetary medium, in: Marsden, R. G. (ed.), The Sun and the Heliosphere in Three Dimensions, D. Reidel Publishing Co., Dordrecht, pp. 455–474.Google Scholar
  81. Morfill, G. E., Havnes, O., and Goertz, C. K.: 1990(in preparation), Origin and maintenance of the oxygen torus in Saturn’s magnetosphere.Google Scholar
  82. Mukai, T., Fechtig, H., Grün, E., and Giese, R. H.: 1989, Icarus 80, 254–266.ADSGoogle Scholar
  83. Perkins, M. A., Simpson, J. A., and Tuzzolino, A. J.: 1985, Nucl. Instrum. Method A239, 310.ADSGoogle Scholar
  84. Ratcliff, P., Gogu, F., Grün, E., and Srama, R.: 1996, Adv. Space Res. 17(12), 111–115.ADSGoogle Scholar
  85. Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W., and Spiesmann, W. J.: 1995, Nature 374, 521–523.ADSGoogle Scholar
  86. Schaffer, L. and Burns, J. A.: 1987, J. Geophys. Res. 92, 2264.ADSGoogle Scholar
  87. Showalter, M. R., Burns, J. A., Cuzzi, J. N., and Pollack, J. B.: 1985, Nature 316, 526–528.ADSGoogle Scholar
  88. Simpson, J. A., Rabinowitz, D., and Tuzzolino, A. J.: 1989, Nucl. Instrum. Methods A279, 611.ADSGoogle Scholar
  89. Simpson, J. A. and Tuzzolino, A. J.: 1985, Nucl. Instrum. Methods A236, 187.ADSGoogle Scholar
  90. Simpson, J. A. and Tuzzolino, A. J.: 1989, Nucl. Instrum. Methods A279, 625.ADSGoogle Scholar
  91. Spahn, F., Thiessenhusen, K.-U., Colwel, J. E., and Srama, R.: 1999, J. Geophys. Res. 104, 24111– 24120.ADSGoogle Scholar
  92. Srama, R. and Grün, E.: 1997, Adv. Space Res. 20(8), 1467–1470.ADSGoogle Scholar
  93. Stübig, M., Schäfer, G., Ho, T. M., Srama, R., and Grün, E.: 2001, Planet. Space Sci. 49(8), 853–858.ADSGoogle Scholar
  94. Sutton, S. R. and Flynn, G. J.: 1988, ‘Stratospheric particles: Synchrotron X-ray fluorescence determination of trace element contents’, in: Proceedings of the XVIII Lunar Planetary Science Conference, Cambridge University Press, Cambridge, pp. 607–613.Google Scholar
  95. Sykes, M. V. and Greenberg, R.: 1986, Icarus 65, 51–69.ADSGoogle Scholar
  96. Thiessenhusen, K. U., Krüger, H., Spahn, F., and Grün, E.: 2000, Icarus 144(1), 89–91.ADSGoogle Scholar
  97. Tiersch, H. and Notni, P.: 1989, Astron. Nachrich. 310(1), 67–78.ADSGoogle Scholar
  98. Tuzzolino, A. J.: 1996, Adv. Space Res. 17(12), 123–132.ADSGoogle Scholar
  99. Whipple, F. L.: 1967, ‘On maintaining the meteoritic complex’, in: Weinberg, J. L. (ed.), NASA SP-150: The Zodiacal Light and the Interplanetary Medium, U.S. Government Printing Office, Washington, DC, pp. 409–426.Google Scholar
  100. Whipple, F. L.: 1975, ‘Sources of interplanetary dust’, in: Elsässer, H., and Fechtig, H. (eds.), Interplanetary Dust and Zodiacal Light, Lecture Notes in Physics, Vol. 48, Springer-Verlag, New York, pp. 403–415.Google Scholar
  101. Wyatt, S. P.: 1969, Planet. Space Sci. 17, 155–171.ADSGoogle Scholar
  102. Zook, H. A.: 1975, Planet. Space Sci. 23, 1391–1397.ADSGoogle Scholar
  103. Zook, H.: 1980, ‘Evidence for ice meteoroids beyond 2 AU’, in: Halliday, I., and McIntosh, B. A. (eds.), Solid Particles in the Solar System, D. Reidel, Dordrecht, Holland, pp. 375–380.Google Scholar
  104. Zook, H. A. and Berg, O. E.: 1975, Planet. Space Sci. 23, 183–203.ADSGoogle Scholar
  105. Zook, H. A., Grün, E., Baguhl, M., Hamilton, D. P., Linkert, G., Liou, J.-C., Forsyth, R., and Phillips, J. L.: 1996, Science 274, 1501–1503.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. Srama
    • 1
    Email author
  • T. J. Ahrens
    • 3
  • N. Altobelli
    • 1
  • S. Auer
    • 4
  • J. G. Bradley
    • 2
  • M. Burton
    • 2
  • V. V. Dikarev
    • 1
    • 21
  • T. Economou
    • 5
  • H. Fechtig
    • 1
  • M. Görlich
    • 11
  • M. Grande
    • 6
  • A. Graps
    • 1
  • E. Grün
    • 1
    • 20
  • O. Havnes
    • 7
  • S. Helfert
    • 19
  • M. Horanyi
    • 17
  • E. Igenbergs
    • 8
  • E. K. Jessberger
    • 9
  • T. V. Johnson
    • 2
  • S. Kempf
    • 1
  • A. V. Krivov
    • 18
  • H. Krüger
    • 1
  • A. Mocker-Ahlreep
    • 1
  • G. Moragas-Klostermeyer
    • 1
  • P. Lamy
    • 10
  • M. Landgraf
    • 22
  • D. Linkert
    • 1
  • G. Linkert
    • 1
  • F. Lura
    • 5
  • J. A. M. McDonnell
    • 12
  • D. Möhlmann
    • 11
  • G. E. Morfill
    • 13
  • M. Müller
    • 12
  • M. Roy
    • 2
  • G. Schäfer
    • 1
  • G. Schlotzhauer
    • 11
  • G. H. Schwehm
    • 14
  • F. Spahn
    • 18
  • M. Stübig
    • 1
  • J. Svestka
    • 15
  • V. Tschernjawski
    • 11
  • A. J. Tuzzolino
    • 5
  • R. Wäsch
    • 11
  • H. A. Zook
    • 16
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Jet Propulsion LaboratoryPasadenaUSA
  3. 3.Seismological LaboratoryCALTECHPasadenaUSA
  4. 4.BasyeUSA
  5. 5.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA
  6. 6.Rutherford Appleton LaboratoryChilton, Didcot, OxonUK
  7. 7.Auroral ObservatoryUniversity of TromsoTromsoNorway
  8. 8.Fachgebiet RaumfahrttechnikTU MünchenGarchingGermany
  9. 9.University MünsterMünsterGermany
  10. 10.Laboratoire d’Astronomie SpatialeMarseille Cedex 12France
  11. 11.DLR BerlinBerlinGermany
  12. 12.Planetary and Space Science Research InstitutOpen UniversityWalton Hall, Milton KeynesUK
  13. 13.Max-Planck-Institut für Physik und AstronomieGarchingGermany
  14. 14.Planetary and Space Science DivisionESA-ESTECNoordwijkThe Netherlands
  15. 15.Prague ObservatoryPrague 1CR
  16. 16.NASA Johnson Space Center, SN3HoustonUSA
  17. 17.Laboratory for Atmospheric and Space PhysicsBoulderUSA
  18. 18.AG nonlinear dynamicsUniversity of PotsdamPotsdamGermany
  19. 19.Lehrstuhl Praktische InformatikUniversity of MannheimMannheimGermany
  20. 20.HIGPUniversity of HawaiiHonoluluUSA
  21. 21.Astronomy Institute of St. Petersburg State UniversityRussia
  22. 22.ESA/ESOCDarmstadtGermany

Personalised recommendations