Advertisement

Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan

  • S. M. KrimigisEmail author
  • D. G. Mitchell
  • D. C. Hamilton
  • S. Livi
  • J. Dandouras
  • S. Jaskulek
  • T. P. Armstrong
  • J. D. Boldt
  • A. F. Cheng
  • G. Gloeckler
  • J. R. Hayes
  • K. C. Hsieh
  • W.-H. Ip
  • E. P. Keath
  • E. Kirsch
  • N. Krupp
  • L. J. Lanzerotti
  • R. Lundgren
  • B. H. Mauk
  • R. W. McEntire
  • E. C. Roelof
  • C. E. Schlemm
  • B. E. Tossman
  • B. Wilken
  • D. J. Williams
Chapter

Abstract

The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager 1 spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling” and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge-energy-mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ~ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5° full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (~0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E < 0.884 MeV in the forward direction (G ~ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ~ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-a measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ~60 RS every 2–3 h (every ~10 min from ~20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be <0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.

Keywords

energetic neutral atoms gas — plasma interaction hot plasma composition magnetospheric imaging planetary magnetosphere Saturn magnetosphere space instrumentation trapped energetic charge particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsif, A.: 1996, Etude et modélisation de la production d’atomes énergétiques neutres dans exosphère de Titan, Ph. D. Thesis, P. Sabatier University, Toulouse, France.Google Scholar
  2. Amsif, A., Dandouras, J., and Roelof, E. C.: 1997, J. Geophys. Res. 102, 22169.ADSCrossRefGoogle Scholar
  3. Barbosa, D. D.: 1987, Icarus 72, 53.ADSCrossRefGoogle Scholar
  4. Barbosa, D. D. and Eviatar, A.: 1986, Astrophys. J. 310, 927.ADSCrossRefGoogle Scholar
  5. Barbosa, D. D., Eviatar, A., and Siscoe, G. L.: 1984, J. Geophys. Res. 89, 3789.ADSCrossRefGoogle Scholar
  6. Baron, R. L., Owen, T., Connerney, J. E. P., Satoh, T., and Harrington, J.: 1996, Icarus 120/122, 437.Google Scholar
  7. Barrow, C. H. and Desch, M. D.: 1989, Astron. Astro. Phys. 213, 495.ADSGoogle Scholar
  8. Belcher, J. W.: 1983, in: Dessler, A. J. (ed.), Physics of the Jovian Magnetosphere, Cambridge University Press, Cambridge, UK and New York, p. 68.Google Scholar
  9. Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Smith, G. R., Strobel, D. F., McConnell, J. C., Kumar, S., Hunten, D. M., Atreya, S. K., Donahue, T. M., Moos, H. W., Bertaux, L., Blamont, J. E., Pomphrey, R. B., and Linick, S.: 1981, Science 212, 206.ADSCrossRefGoogle Scholar
  10. Bums, J. A., et al.: 1994, An Integrated Strategy for the Planetary Sciences: 1995–2010, Report of the Committee on Planetary and Lunar Exploration, Space Studies Board, National Research Council, Washington, DC.Google Scholar
  11. Carbary, J. F. and Krimigis, S. M.: 1982, Geophys. Res. Lett. 9, 420.ADSCrossRefGoogle Scholar
  12. Cheng, A. F.: 1986, J. Geophys. Res. 91, 4524.ADSCrossRefGoogle Scholar
  13. Cheng, A. F. and Krimigis, S. M.: 1989a, J. Geophys. Res. 94, 12003.ADSCrossRefGoogle Scholar
  14. Cheng, A. F. and Krimigis, S. M.: 1989b, in: Waite, J. H., Burch, J., and Moore, R. (eds.), AGU Solar System Plasma Physics, p. 253.Google Scholar
  15. Cheng, A. F., Keath, E. P., Krimigis, S. M., Mauk, B. H., McEntire, R. W., Mitchell, D. G., Roelof, E. C., and Williams, D. J.: 1993, Remote Sens. Rev. 8, 101.CrossRefGoogle Scholar
  16. Clarke, J. T., et al.: 1996, Science 274, 404.ADSCrossRefGoogle Scholar
  17. Curtis, C. C. and Hsieh, K. C.: 1989, AGU Solar Syst. Plasma Phys., Geophys. Monogr. Ser 54, 247.CrossRefGoogle Scholar
  18. Dandouras, J. and Amsif, A.: 1999, Planet. Space Sci. 47, 1355.ADSCrossRefGoogle Scholar
  19. Desch, M. D. and Barrow, C. H.: 1984, J. Geophys. Res. 89, 6819.ADSCrossRefGoogle Scholar
  20. Dessler, A. J.: 1983, Physics of the Jovian Magnetosphere, Cambridge University Press.Google Scholar
  21. Esposito, L. W., Cuzzi, J. N., Holberg, J. B., Marouf, E. A., Tyler, G. L., and Porco, C. C.: 1984, in: Gehrels, T., and Matthews, M. S. (eds.), Saturn, The University of Arizona Press, Tucson, p. 463.Google Scholar
  22. Eviatar, A.: 1992, Adv. Space Res. 12(8), 367.ADSCrossRefGoogle Scholar
  23. Eviatar, A., Mekler, Y., and Coroniti, F. V.: 1976, Astrophys. J. 205, 622.ADSCrossRefGoogle Scholar
  24. Fisk, L. A., Schwadron, N. A., and Gloeckler, G.: 1997, Geophys. Res. Lett. 24, 93.ADSCrossRefGoogle Scholar
  25. Gehrels, T.: 1976, Jupiter, University of Arizona Press, Tucson, Arizona.Google Scholar
  26. Geiss, J., Gloeckler, G., Fist, L. A., and von Steiger, R.: 1995, J. Geophys. Res. 100, 23373.ADSCrossRefGoogle Scholar
  27. Geiss, J., Gloeckler, G., Mall, U., von Steiger, R., Galvin, A. B., and Ogilvie, K. W.: 1994, Ast ron. Astrophys. 282, 924.ADSGoogle Scholar
  28. Geiss, J., et al.: 1992, Science 257, 1535.ADSCrossRefGoogle Scholar
  29. Gloeckler, G.: 1996, Space Sci. Rev. 78, 335.ADSCrossRefGoogle Scholar
  30. Gloeckler, G. and Geiss, J.: 1998, Space Sci. Rev. 86(1–2), 127–159.ADSCrossRefGoogle Scholar
  31. Gloeckler, G. and Geiss, J.: 1996, Nature 381, 210.ADSCrossRefGoogle Scholar
  32. Gloeckler, G. and Hsieh, K. C.: 1979, Nucl. Inst. Methods 165, 537.ADSCrossRefGoogle Scholar
  33. Gloeckler, G., Fisk, L. A., and Geiss, J.: 1997, Nature 386, 374.ADSCrossRefGoogle Scholar
  34. Gloeckler, G., Balsiger, H., Büirgi, A., Bochsler, R, Fisk, L. A., Galvin, A. B., Geiss, J., Gliem, F., Hamilton, D. C., Holzer, T. E., Hovestadt, D., Ipavich, F. M., Kirsch, E., Lundgren, R. A., Ogilvie, K. W., Sheldon, R. B., and Wilken, B.: 1995, Space Sci. Rev. 71, 79.ADSCrossRefGoogle Scholar
  35. Gloeckler, G., Jokipii, J. R., Giacalone, J., and Geiss, J.: 1994, Geophys. Res. Lett. 21, 1565.ADSCrossRefGoogle Scholar
  36. Gloeckler, G., Geiss, J., Balsiger, H., Fisk, L. A., Galvin, A. B., Ipavich, F. M., Ogilvie, K. W., von Steiger, R., and Wilken, B.: 1993, Science 261, 70.ADSCrossRefGoogle Scholar
  37. Goertz, C. K.: 1989, in: Waite, J. H., Burch, J. L., and Moore, R. L. (eds.), AGU Solar System Plasma Physics, Geophysical Monograph Series Vol. 54, p. 427.Google Scholar
  38. Gumett, D. A., et al.: 1982, J. Geophys. Res. 87, 1395.ADSCrossRefGoogle Scholar
  39. Hilchenbach, M. et al.: 1998, Astophys. J. 503, 916.ADSCrossRefGoogle Scholar
  40. Holzer, T. E.: 1977, Rev. Geophys. Space Phys. 15, 467.ADSCrossRefGoogle Scholar
  41. Hsieh, K. C. and Curtis, C. C.: 1989, in: Waite, J., Burch, J., and Moore, R. L. (eds.), AGU Solar System Plasma Physics, p. 159.Google Scholar
  42. Hsieh, K. C. and Curtis, C. C.: 1988, Geophys. Res. Leu. 15, 772.ADSCrossRefGoogle Scholar
  43. Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992a, Astophys. .1. 393, 756.ADSCrossRefGoogle Scholar
  44. Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992b, in: Marsch, E., and Schwenn, R. (eds.), Proceedings of the 3rd COSPAR Colloquium, p. 365.Google Scholar
  45. Hsieh, K. C., Sandel, B. R., Drake, V. A., and King, R. S.: 1991, Nucl. Inst. Methods B61, 187.ADSCrossRefGoogle Scholar
  46. Hsieh, K. C., Keppler, E., and Schmidtke, G.: 1980, J. Appl. Phys. 51, 2242.ADSCrossRefGoogle Scholar
  47. Ip, W. H.: 1997, Icarus 126, 42.ADSCrossRefGoogle Scholar
  48. Ip, W. H.: 1996, Astrophys. J. 457, 922.ADSCrossRefGoogle Scholar
  49. Ip, W. H.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 243.Google Scholar
  50. Ip, W. H.: 1990, Astrophys. J. 362, 354.ADSCrossRefGoogle Scholar
  51. Ip, W. H.: 1984, J. Geophys. Res. 89, 2377.ADSCrossRefGoogle Scholar
  52. Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1998, Geophys. Res. Lett. 25, 829.ADSCrossRefGoogle Scholar
  53. Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1997, Geophys. Res. Leu. 24, 2631.ADSCrossRefGoogle Scholar
  54. Ipavich, F. M., Lundgren, R. A., Lambird, B. A., and Gloeckler, G.: 1978, Nucl. Inst. Methods 154, 291.ADSCrossRefGoogle Scholar
  55. Johnson, R. E.: 1990, Energetic Charged Particle Interactions with Atmospheres and Surfaces, Springer-Verlag, New York.CrossRefGoogle Scholar
  56. Johnson, R. E., Pospieszalska, M., Sittler, E., Cheng, A. F., Lanzerotti, L. J., and Sieveka, E. M.: 1989, Icarus 77, 311.ADSCrossRefGoogle Scholar
  57. Kaiser, M. L.: 1993, J. Geophys. Res. 98, 18757.ADSCrossRefGoogle Scholar
  58. Kirsch, E., Krimigis, S. M., Ip, W. H., and Gloeckler, G.: 1981a, Nature 292, 718.ADSCrossRefGoogle Scholar
  59. Kirsch, E., Krimigis, S. M., Kohl, J. W., and Keath, E. P.: 1981b, Geophys. Res. Lett. 8, 169.ADSCrossRefGoogle Scholar
  60. Krimigis, S. M.: 1992, Space Sci. Rev. 59, 167.ADSCrossRefGoogle Scholar
  61. Krimigis, S. M.: 1986, Comparative Study of Magnetospheric Systems, CNES, LEPADUE Editions, Toulouse, France, Vol. 99.Google Scholar
  62. Krimigis, S. M. and Armstrong, T. P.: 1982, Geophys. Res. Lett. 9, 1143.ADSCrossRefGoogle Scholar
  63. Krimigis, S. M., Carbary, J. F., Keath, E. P., and Armstrong, T. R: 1982a, EOS 1068.Google Scholar
  64. Krimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Gloeckler, G., Keath, E. R, Lanzerotti, L. J., Carbary, J. F., Hamilton, D. C., and Roelof, E. C.: 1982b, Science 215, 571.ADSCrossRefGoogle Scholar
  65. Krimigis, S. M., Carbary, J. F., Keath, E. R, Armstrong, T. R, Lanzerotti, L. J., and Gloeckler, G.: 1983, J. Geophys. Res. 88, 8871.ADSCrossRefGoogle Scholar
  66. Krimigis, S. M., Decker, R. B., Hamilton, D., and Gloeckler, G.: 2000, AIP Conf Proc. 528, 333 – 336.ADSCrossRefGoogle Scholar
  67. Krimigis, S. M., Zwickl, R. D., and Baker, D. N.: 1985, .J. Geophys. Res. 90, 3947.ADSCrossRefGoogle Scholar
  68. Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Dandouras, J., Armstrong, T. R, Bolton, S. J., Cheng, A. F., Gloeckler, G., Hsieh, K. C., Keath, E. R, Krupp, N., Lagg, A., Lanzerotti, L. J., Livi, S., Mauk, B. H., McEntire, R. W., Roelof, E. C., Wilken, B., and Williams, D. J.: 2002, Nature 415, 994.ADSCrossRefGoogle Scholar
  69. Krimigis, S. M., et al.: 1988, Planet. Space Sci. 36, 311.ADSCrossRefGoogle Scholar
  70. Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1249–1252.ADSCrossRefGoogle Scholar
  71. Lagg, Andreas: 1998, Energiereiche Teilchen in der inneren Jupitermagnetosphaere: Simulation und Ergebnisse des EPD-Experimentes an Bord der Raumsonde GALILEO, Dissertation, Max-PlanckInstitut fuer Aeronomie, Lindau/Harz, Germany, MPAE-W-807–98-01.Google Scholar
  72. Lee, M. A.: 1982, J. Geophys. Res. 87, 5063.ADSCrossRefGoogle Scholar
  73. Mall, U., Fichtner, H., Kirsch, E., Hamilton, D. C., and Rucinski, D.: 1998, Planet. Space Sci., 46, 1375–1382.ADSCrossRefGoogle Scholar
  74. Mauk, B. H. and Krimigis, S. M.: 1987, J. Geophys. Res. 92, 9931.ADSCrossRefGoogle Scholar
  75. Mauk, B. H., Krimigis, S. M., Mitchell, D. G., Roelof, E. C., Keath, E. R, and Dandouras, J.: 1998, Planet. Space Sci. 46, 1349.ADSCrossRefGoogle Scholar
  76. Mauk, B. H., Williams, D. J., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2949.ADSCrossRefGoogle Scholar
  77. Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., and Roederer, J. G.: 1999, J. Geophys. Res. 104, 22759.Google Scholar
  78. Mauk, B. H., Krimigis, S. M., Mitchell, D. G., and Roelof, E. C.: 1998, Adv. Space Res. 21, 1483.ADSCrossRefGoogle Scholar
  79. Mauk, B. H., Krimigis, S. M., and Acuña, M. H.: 1994, J. Geophys. Res. 99, 14781.ADSCrossRefGoogle Scholar
  80. Mauk, B., Krimigis, S. M., and Lepping, R.: 1985, J. Geophys. Res. 90, 8253.ADSCrossRefGoogle Scholar
  81. McEntire, R. W. and Mitchell, D. G.: 1989, in: Burch, J., and Waite, J. (eds.), Outstanding Problems in Solar System Plasma Physics, AGU Monograph.Google Scholar
  82. Meckbach, W., Braunstein, G., and Arista, N.: 1975, J. Phys. B8, L344.ADSGoogle Scholar
  83. Mendis, D. A., Hill, J. R., Ip, W. H., Goertz, C. K., and Grün, E.: 1984, ’Electrodynamic processes in the ring system of Saturn’, in: Gehrels, T., and Matthews, M. S. (eds.), Saturn, The University of Arizona Press, Tucson, p. 546.Google Scholar
  84. Mitchell, D. G., Hsieh, K. C., Curtis, C. C., Hamilton, D. C., Voss, H. D., Roelof, E. C., and Brent, P. C.: 2001, Geophys. Res. Lett. 28, 1151.ADSCrossRefGoogle Scholar
  85. Mitchell, D. G., Krimigis, S. M., Cheng, A. F., Jaskulek, S. E., Keath, E. P., Mauk, B. H., McEntire, R. W., Roelof, E. C., Schlemm, C. E., Tossman, B. E., and Williams, D. J.: 1996, in: Proceedings SPIE International Symposium on Optical Science Engineering and Instrumentation, Mission to the Sun, Vol. 2803, p. 154.Google Scholar
  86. Ness, N. F., et al.: 1982, J. Geophys. Res. 87, 1369.ADSCrossRefGoogle Scholar
  87. Neubauer, E M.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 267.Google Scholar
  88. Paonessa, M. and Cheng, A. F.: 1986, J. Geophys. Res. 91, 1391.ADSCrossRefGoogle Scholar
  89. Paranicas, C., Cheng, A. F., and Williams, D. J.: 1998, J. Geophys. Res. 103, 15001.ADSCrossRefGoogle Scholar
  90. Paranicas, C. P., Mauk, B. H., and Krimigis, S. M.: 1991, J. Geophys. Res. 96, 21135.Google Scholar
  91. Prangé, R., Zarka, P., Ballester, G. E., Livengood, T. A., Denis, L., Carr, T., Reyes, F., Bame, S. J., and Moos, H. W.: 1993, Geophys. Res. 98, 18779.ADSCrossRefGoogle Scholar
  92. Reiner, M. J., Fainberg, J., Stone, R. G., Kaiser, M. L., Desch, M. D., Manning, R., Zarka, P., and Pedersen, B. M.: 1993, J. Geophys. Res. Planets 98, 13163.ADSCrossRefGoogle Scholar
  93. Roelof, E. C.: 1992, in: Marsh, E., and Schwenn, R. (eds.), Proceedings of the 3rd COSPAR Colloquium, p. 385.Google Scholar
  94. Roelof, E. C.: 1987, Geophys. Res. Lett. 14, 652.ADSCrossRefGoogle Scholar
  95. Roelof, E. C. and Williams, D. J.: 1990, Johns Hopkins APL Tech. Dig. 11, 72.Google Scholar
  96. Roelof, E. C., Mitchell, D. G., and Williams, D. J.: 1985, J. Geophys. Res. 90, 10991.ADSCrossRefGoogle Scholar
  97. Sandel, B. R. and Broadfoot, A. L.: 1981, Nature 292, 679.ADSCrossRefGoogle Scholar
  98. Satoh, T., Connerney, J. E. P., and Baron, R. L.: 1996, Icarus 122, 1.ADSCrossRefGoogle Scholar
  99. Schneider, N. M. and Trauger, J. T.: 1995, Astrophys. J. 450, 450.ADSCrossRefGoogle Scholar
  100. Schulz, M. and Lanzerotti, L. J.: 1974, Particle Diffusion in the Radiation Belts, Springer-Verlag.CrossRefGoogle Scholar
  101. Shemansky, D. E. and Hall, D. T.: 1992, J. Geophys. Res. 97, 4143.ADSCrossRefGoogle Scholar
  102. Simpson, J. A., Bastian, T. S., Chenette, D. L., McKibben, R. B., and Pyle, K. R.: 1980, J. Geophys. Res. 85, 5731.ADSCrossRefGoogle Scholar
  103. Sittler, E. C., Ogilvie, K. W., and Scudder, J. D.: 1983, J. Geophys. Res. 88, 8847.ADSCrossRefGoogle Scholar
  104. Van Allen, J. A.: 1984, in: Gehrels, T., and Matthews, M. S. (eds.), Saturn, p. 281.Google Scholar
  105. Williams, D. J. and Mauk, B. H.: 1997, J. Geophys. Res. 102, 24283.ADSCrossRefGoogle Scholar
  106. Williams, D. J., Mauk, B., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2953.ADSCrossRefGoogle Scholar
  107. Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., Lanzerotti, L. J., and Murphy, N.: 1997b, Geophys. Res. Lett. 24, 2163.ADSCrossRefGoogle Scholar
  108. Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., and Lanzerotti, L. J.: 1996, Science 274, 401.ADSCrossRefGoogle Scholar
  109. Williams, D. J., McEntire, R. W., Schlemm, C. E., Lui, A. T. Y., Gloeckler, G., Christon, S. P., and Gliem, F.: 1994, J. Geomagn. Geoelectr. 46, 39.CrossRefGoogle Scholar
  110. Witte, M., Banaszkiewicz, M., and Rosenbauer, H.: 1996, Space Sci. Rev. 78, 289.ADSCrossRefGoogle Scholar
  111. Woch, J., Krupp, N., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1253–1256.ADSCrossRefGoogle Scholar
  112. Woch, J., Krupp, N., Khurana, K. K., Kivelson, M. G., Roux, A., Perraut, S., Louarn, P., Lagg, A., Williams, D. J., Livi S., and Wilken, B.: 1999, Geophys. Res. Lett. 26, 2137–2140.ADSCrossRefGoogle Scholar
  113. Zwickl, R. D., Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. R, Hamilton, D. C., and Gloeckler, G.: 1981, J. Geophys. Res. 86, 8125.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. M. Krimigis
    • 1
    Email author
  • D. G. Mitchell
    • 1
  • D. C. Hamilton
    • 2
  • S. Livi
    • 1
  • J. Dandouras
    • 4
  • S. Jaskulek
    • 1
  • T. P. Armstrong
    • 5
  • J. D. Boldt
    • 1
  • A. F. Cheng
    • 1
  • G. Gloeckler
    • 2
  • J. R. Hayes
    • 1
  • K. C. Hsieh
    • 6
  • W.-H. Ip
    • 3
  • E. P. Keath
    • 1
  • E. Kirsch
    • 3
  • N. Krupp
    • 3
  • L. J. Lanzerotti
    • 7
  • R. Lundgren
    • 2
  • B. H. Mauk
    • 1
  • R. W. McEntire
    • 1
  • E. C. Roelof
    • 1
  • C. E. Schlemm
    • 1
  • B. E. Tossman
    • 1
  • B. Wilken
    • 1
  • D. J. Williams
    • 3
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkUSA
  3. 3.Max-Planck Institut für AeronomieKatlenburg-LindauGermany
  4. 4.Centre d’Etude Spatiale des RayonnementsCNRS/Université Paul SabatierFrance
  5. 5.Department of Physics and AstronomyUniversity of KansasLawrenceUSA
  6. 6.Department of PhysicsUniversity of ArizonaTucsonUSA
  7. 7.Bell LaboratoriesLucent TechnologiesMurry HillUSA

Personalised recommendations