Advertisement

A Panorama of PHENIX Physics

  • S. V. Greene
Conference paper
Part of the NATO Science Series book series (NAII, volume 166)

Abstract

Looking back on the development of the universe in the context of our present scientific understanding, we believe that the universe began with the big bang and subsequently expanded and cooled. Increasingly more complex forms of matter began to emerge as temperatures dropped sufficiently to allow matter to bind. Early on, the universe consisted of a plasma that included deconfined quarks and gluons. Within microseconds after the big bang, the temperature had decreased sufficiently for the strong force to bind the quarks and gluons into hadrons. With further cooling, nucleosynthesis followed and eventually electrons joined nuclei electromagnetically to form neutral atoms. After this stage, the gravitational force began to dominate the universe. A primary goal of relativistic heavy ion physics is to produce, detect, and describe the quark-gluon plasma (QGP) phase. Towards this end, four experiments have been built at RHIC: BRAHMS [1], PHENIX [2], PHOBOS [3], and STAR [4]. This paper describes experimental results from the first three years of experiments at the Relativistic Heavy Ion Collider with a strong focus on data taken with the PHENIX detector.

Keywords

Phenix Experiment Initial State Effect Color Singlet Model Phenix Detector Parton Structure Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adamczyk, et al., Nucl. Instr. Meth. A 499, 437 (2003).Google Scholar
  2. [2]
    K. Adcox, et al., Nucl. Instr. Meth. A 499, 469 (2003).Google Scholar
  3. [3]
    Back, et al.,Nucl. Instr. Meth. A 499, 603 (2003).Google Scholar
  4. [4]
    Ackermann et al.,Nucl. Instr. Meth. A 499, 624 (2003).Google Scholar
  5. [5]
    N. Saito et al., Nucl. Phys. A638, 575c (1998).ADSCrossRefGoogle Scholar
  6. [6]
    For example, see Proceedings Quark Matter 1984, edited by K. Kajantie (Springer, Berlin, 1985 ); Proceedings Quark Matter 1987, edited by H. Satz, H. J. Specht, and R. Stock [Z. Phys. C 38,1–370 (1988)].Google Scholar
  7. [7]
    J. D. Bjorken, Phys. Rev. D 27, 140 (1983).Google Scholar
  8. [8]
    Helios Collaboration, T. Åkesson et al., Z. Phys. C 38, 383 (1988)Google Scholar
  9. Helios Collaboration, T. Åkesson et al., Z. Phys. 38, 397 (1988).Google Scholar
  10. [9]
    S.S.Adler et al., Phys. Rev. Lett. 91, 072301 (2003).Google Scholar
  11. [10]
    J.F. Owens et al., Phys. Rev. D18, 1501 (1978).ADSGoogle Scholar
  12. [11]
    R.J. Glauber and G. Matthiae, Nucl. Phys. B 21, 135 (1970).Google Scholar
  13. [12]
    I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89 (2002).Google Scholar
  14. [13]
    S. Jeon, J. Jalilian-Marian and I. Sarcevic, Phys. Lett. B562, 2003.Google Scholar
  15. [14]
    G.G. Barnafoldi, P. Levai, G. Papp, G. Fai, and Y. Zhang, nucl-th/0212111.Google Scholar
  16. [15]
    X. N. Wang, Nucl. Phys. A715, 775 (2003).CrossRefGoogle Scholar
  17. [16]
    D. Kharzeev, E. Levin and L. McLerran Phys.Lett. B561: 93, 2003.Google Scholar
  18. [17]
    K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 88, 022301 (2002).Google Scholar
  19. [18]
    B. M¨uller, Phys.Rev. C67: 06 1901, 2003Google Scholar
  20. [19]
    F. Arleo, J. High Energy Phys. 11, 44 (2002).ADSCrossRefGoogle Scholar
  21. [20]
    C. A. Salgado and U. A. Wiedemann, Phys.Rev. D68: 014008, 2003Google Scholar
  22. [21]
    K. Gallmeister, C. Greiner and Z. Xu (to appear in Phys. Rev. C), hep-ph/0212295.Google Scholar
  23. [22]
    M. Gyulassy and M. Plümer, Phys. Lett. B243, 432 (1990);Google Scholar
  24. X.N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).ADSCrossRefGoogle Scholar
  25. [23]
    R. Baier, D. Schiff and B.G. Zakharov, Annu. Rev. Nucl. Part. Sci. 50, 37 (2000), and references therein.Google Scholar
  26. [24]
    S. S. Adler et al., Phys. Rev. Lett. 91, 072303 (2003).Google Scholar
  27. [25]
    S.S. Adler et al. [PHENIX Collaboration], submitted to Phys. Rev. Lett.Google Scholar
  28. [26]
    L. Aphecetche et al. [PHENIX Collaboration], Nucl. Instrum. Methods A499, 521 (2003).Google Scholar
  29. [27]
    GEANT 3.21, CERN program library.Google Scholar
  30. [28]
    X. N. Wang and M. Gyulassy, Phys. Rev. D44, 3501 (1991).ADSGoogle Scholar
  31. [29]
    K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 86, 3500 (2001).Google Scholar
  32. [30]
    The Run-2 minimum bias trigger is inefficient for very peripheral reactions and records 92.2±3.5% of σAuAu.Google Scholar
  33. [31]
    Woods-Saxon Au nuclear radius R = 6.38±ó.i3 fm, diffusivity a = 0.53 f 0.01 fm [B. Hahn, D.G. Ravenhall and R. Hofstadter, Phys. Rev. 101, 1131 (1956)], and nucleon-nucleon cross section σinel NN = 42 f 3 mb.Google Scholar
  34. [32]
    M.M. Aggarwal et al. [WA98 Collaboration], Eur. Phys. J. C23, 225 (2002).Google Scholar
  35. [33]
    D. Antreasyan et al., Phys. Rev. D19, 764 (1979).Google Scholar
  36. [34]
    K. J. Eskola, V. J. Kolhinen and C. A. Salgado, Eur. Phys. J. C 9, 61 (1999);ADSGoogle Scholar
  37. S. R. Klein and R. Vogt, Phys. Rev. C67,047901 (2003).Google Scholar
  38. [35]
    M. Gyulassy, P. Levai and I. Vitev, Phys. Rev. Lett. 85, 5535 (2000)Google Scholar
  39. M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594, 371 (2001).Google Scholar
  40. [36]
    M. Gyulassy and M. Pl¨umer, Phys. Lett. B243, 432 (1990);Google Scholar
  41. [37]
    X.N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).ADSCrossRefGoogle Scholar
  42. [38]
    R. Baier et al., Phys. Lett. B345, 277 (1995).Google Scholar
  43. [39]
    K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002).Google Scholar
  44. [40]
    K. Adcox et al., Phys. Lett. B561, 82 (2003).Google Scholar
  45. C. Adler et al., Phys. Rev. Lett. 89, 202301 (2002).Google Scholar
  46. [41]
    S.S. Adler et al., nucl-ex/0304022, sub. to Phys. Rev. Lett.Google Scholar
  47. [42]
    M. Gyulassy and X.N. Wang, Nucl. Phys. B420, 583 (1994);ADSCrossRefGoogle Scholar
  48. X.N. Wang, Phys. Rev. C58, 2321 (1998). nucl-th/0212111;Google Scholar
  49. V. Greco, C.M. Ko and P. L´evai, Phys. Rev. Lett. 90, 202302 (2003).Google Scholar
  50. [43]
    K. Adcox et al., Nucl. Instrum. Methods A499,469 (2003), and references therein.Google Scholar
  51. [44]
    J. Jia et al., Nucl. Phys. A715, 769c (2003).Google Scholar
  52. [45]
    J. Adams et al., nucl-ex/0306024, sub. to Phys. Rev. Lett.Google Scholar
  53. [46]
    B.B. Back et al., nucl-ex/0306025, sub. to Phys. Rev. Lett.Google Scholar
  54. [47]
    J. T. Mitchell et al., Nucl. Instrum. Methods A482,491 (2002).Google Scholar
  55. B. Alper et al., Nucl. Phys. B100, 237 (1975).Google Scholar
  56. [49]
    In the present work the Woods-Saxon nuclear density parameters radius R = 6.38 fm, diffusivity a = 0.54 fm and N-N cross section σNN = 42 mb were used. The deuteron is described by a Hulth´en wave function (L. Hulth´en and M.Sagawara, Handbuch der Physik 39 (1957).) with α= 0.228 fm 1 and β= 1.18 fm-1.Google Scholar
  57. [50]
    B. Kopeliovich, Phys. Rev. Lett. 88, 232–303 (2002).CrossRefGoogle Scholar
  58. [51]
    R. Vogt, Phys. Repts. 310, 197 (1999);ADSCrossRefGoogle Scholar
  59. [52]
    G A. Schuler, hep-ph/9403387, and references therein.Google Scholar
  60. [53]
    F. Abe et al., Phys. Rev. Lett. 69, 3704 (1992);Google Scholar
  61. [54]
    F. Abe et al., Phys. Rev. D66, 092001 (2002);Google Scholar
  62. [55]
    S. Abachi et al., Phys. Lett. B370, 239 (1996);Google Scholar
  63. B. Abbot et al., Phys. Rev. Lett. 82, 35 (1999).Google Scholar
  64. F. Abe et al., Phys. Rev. Lett. 79, 572 (1997).Google Scholar
  65. E. Braaten et al., Ann.Rev.Nucl.Part.Sci. 46, 197 (1996).Google Scholar
  66. G. T. Bodwin et al., Phys. Rev. D51,1125 (1995);Google Scholar
  67. G. T. Bodwin et al., erratum Phys. Rev. D55,5853 (1997).Google Scholar
  68. [56]
    J. F. Amundson et al., Phys. Lett. B390, 323 (1997), and private communication.Google Scholar
  69. [57]
    E. Braaten et al., Phys. Rev. Lett. 71, 1673 (1993).Google Scholar
  70. [58]
    K. Adcox et al., Nucl. Instrum. Methods A499,469 (2003).Google Scholar
  71. [59]
    H. D. Sato, Ph.D Thesis, hep-ph/0305239.Google Scholar
  72. [60]
    Particle Data Group, Phys. Rev. D66, 010001 (2002).Google Scholar
  73. [61]
    S. S. Adler et al., hep-ex/0304038.Google Scholar
  74. [62]
    T. Sj¨ostrand, Comp. Phys. Comm. 135, 238 (2001).Google Scholar
  75. [63]
    R. Kephart et al., Phys. Rev. D14, 2909 (1976).Google Scholar
  76. [64]
    T. Affolder et al., Phys. Rev. Lett. 85, 2886 (2000);Google Scholar
  77. E. Braaten et al., Phys. Rev. D62, 094005 (2000).Google Scholar
  78. [65]
    Gouranga C. Nayak et al., hep-ph/0302095.Google Scholar
  79. [66]
    A. Gribushin et al., Phys. Rev. D62, 012001 (2000) and references therein.Google Scholar
  80. [67]
    M. Beneke and I. Z. Rothstein, Phys. Rev. D54, 2005 (1996).ADSGoogle Scholar
  81. [68]
    S. S. Adler et al., Phys. Rev. C, Phys. Rev. C 69, 014901 (2004).Google Scholar
  82. [69]
    S. S. Adler et al., Phys. Rev. C69, 014901 (2004).Google Scholar
  83. [70]
    I. Vitev, Phys. Lett. B562, 36 (2003).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • S. V. Greene
    • 1
  1. 1.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations