Advertisement

Plant Hormones pp 179-203 | Cite as

Regulation of Gibberellin and Brassinosteroid Biosynthesis by Genetic, Environmental and Hormonal Factors

  • James B. Reid
  • Gregory M. Symons
  • John J. Ross

Abstract

The biosynthesis of plant hormones involves a series of steps that converts intermediates with little or no biological activity into the active form. Usually each step is catalysed by an enzyme that is in turn encoded by a gene, referred to as a hormone “synthesis gene”. Mutations in these genes can give rise to “synthesis mutants”, which are deficient to varying extents in the hormone in question. The striking phenotypes of some of these mutants provide the most graphic evidence that plant hormones are essential factors for plant growth and development. Striking phenotypes can also be caused by mutations that impair hormone deactivation.

Keywords

Hormone Biosynthesis Brassinosteroid Biosynthesis Hormone Biosynthesis Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111: 9-17CrossRefPubMedGoogle Scholar
  2. 2.
    Ait-Ali T, Frances S, Weller JL, Reid JB, Kendrick RE, Kamiya Y (1999) Regulation of gibberellin 20-oxidase and gibberellin 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings. Plant Physiol 121: 783-91CrossRefPubMedGoogle Scholar
  3. 3.
    Ait-Ali T, Swain SM, Reid JB, Sun T, Kamiya Y (1997) The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J 11: 443-454CrossRefPubMedGoogle Scholar
  4. 4.
    Altmann T (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208: 1-11CrossRefPubMedGoogle Scholar
  5. 5.
    Behringer FJ, Cosgrove DJ, Reid JB, Davies PJ (1990) Physical basis for altered stem elongation rates in internode length mutants of Pisum. 94: 166-173Google Scholar
  6. 6.
    Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761-1766CrossRefPubMedGoogle Scholar
  7. 7.
    Brady SM, McCourt P (2003) Hormone cross talk in seed dormancy. J Plant Growth Regul 22: 25-31CrossRefGoogle Scholar
  8. 8.
    Brian PW, Hemming HG (1955) The effects of gibberellic acid on shoot growth of pea seedlings. Physiol Plant 8: 669-681CrossRefGoogle Scholar
  9. 9.
    Chory J, Li J (1997) Gibberellins, brassinosteroids and light-regulated development. Plant Cell Environ 20: 801-806CrossRefGoogle Scholar
  10. 10.
    Clouse SD (2001) Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Sci 6: 443-445CrossRefPubMedGoogle Scholar
  11. 11.
    Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131: 335-344CrossRefPubMedGoogle Scholar
  12. 12.
    Davidson SE, Reid JB (2004) The pea gene LH encodes ent-kaurene oxidase. Plant Physiol 134, 1123-1134CrossRefPubMedGoogle Scholar
  13. 13.
    Elliott RC, Ross JJ, Smith JJ, Lester DR, Reid JB (2001) Feed-forward regulation of gibberellin deactivation in pea. J Plant Growth Regul 20: 87-94.CrossRefGoogle Scholar
  14. 14.
    Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137-164CrossRefPubMedGoogle Scholar
  15. 15.
    Gil J, García-Martinez JL (2000) Light regulation of gibberellin A1 content and expression of genes coding for GA 20-oxidase and GA 3β-hydroxylase in etiolated pea seedlings. Physiol Plant 108: 223-228CrossRefGoogle Scholar
  16. 16.
    Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130: 1319-34.CrossRefPubMedGoogle Scholar
  17. 17.
    Hedden P, Croker SJ (1992) Regulation of gibberellin biosynthesis in maize seedlings. In CM Karssen, LC van Loon, D Vreugdenhil, eds, Progress in Plant Growth Regulation. Kluwer Academic Publishers, Dordrecht, pp 534-544Google Scholar
  18. 18.
    Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5: 523-530CrossRefPubMedGoogle Scholar
  19. 19.
    Ingram TJ, Reid JB, MacMillan J (1986) The quantitative relationship between gibberellin A1 and internode growth in Pisum sativum L. Planta 168: 414-420CrossRefGoogle Scholar
  20. 20.
    Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum: the Le gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160: 455-463CrossRefGoogle Scholar
  21. 21.
    Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625-636CrossRefPubMedGoogle Scholar
  22. 22.
    Law DM, Davies PJ (1990) Comparative indole-3-acetic acid levels in the slender pea and other pea phenotypes. Plant Physiol 93: 1539-1543CrossRefPubMedGoogle Scholar
  23. 23.
    Lawrence NL, Ross JJ, Mander LN, Reid JB (1992) Internode length in Pisum. Mutants lk, lka and lkb do not accumulate gibberellins. J Plant Growth Regul 11: 35-37CrossRefGoogle Scholar
  24. 24.
    Lester DR, Ross JJ, Ait-Ali T, Martin DN, Reid JB (1996) A gibberellin 20-oxidase cDNA (Accession no. U58830) from pea (Pisum sativum L.) seed. Plant Physiol 111: 1353CrossRefGoogle Scholar
  25. 25.
    Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3β-hydroxylase. Plant Cell 9: 1435-1443CrossRefPubMedGoogle Scholar
  26. 26.
    Lester DR, Ross JJ, Smith JJ, Elliott RC, Reid JB (1999) Gibberellin 2-oxidation and the SLN gene of Pisum sativum. Plant J 19: 65-73CrossRefPubMedGoogle Scholar
  27. 27.
    Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401CrossRefPubMedGoogle Scholar
  28. 28.
    Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589-2607CrossRefPubMedGoogle Scholar
  29. 29.
    Martin DN, Proebsting WM, Hedden P (1997) Mendel's dwarfing gene: cDNAs from the le alleles and function of the expressed proteins. Proc Natl Acad Sci USA 94: 8907-8911CrossRefPubMedGoogle Scholar
  30. 30.
    Martin DN, Proebsting WM, Hedden P (1999) The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol 121:775-781CrossRefPubMedGoogle Scholar
  31. 31.
    Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200: 159-166CrossRefPubMedGoogle Scholar
  32. 32.
    McKay MJ, Ross JJ, Lawrence NL, Cramp RE, Beveridge CA, Reid JB (1994) Control of internode length in Pisum sativum. Further evidence for the involvement of indole-3- acetic acid. Plant Physiol 106: 1521-1526PubMedGoogle Scholar
  33. 33.
    Nagata N, Min YK, Nakano T, Asami S, Yoshida S (2000) Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta 211: 781-790CrossRefPubMedGoogle Scholar
  34. 34.
    Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol 43: 239-244CrossRefPubMedGoogle Scholar
  35. Nemhauser J, Chory J (2002) Photomorphogenesis. In: CR Somerville, EM Meyerowitz eds. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD http://www.aspb.org/downloads/arabidopsis/nemhau.p
  36. 36.
    Nomura T, Bishop GJ, Kaneta T, Reid JB, Chory J, Yokota T (2004) The LKA gene is a BRASSINOSTEROID INSENSITIVE1 homolog of pea. Plant J 36: 291-300CrossRefGoogle Scholar
  37. 37.
    Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999) Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea. Plant Physiol 119: 1517-1526CrossRefPubMedGoogle Scholar
  38. 38.
    Nomura T, Nakayama M, Reid JB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteriod biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113: 31-37PubMedGoogle Scholar
  39. 39.
    Nomura T, Sato T, Bishop GJ, Kamiya Y, Takasuto S, Yokota T (2001) Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochem 57: 171-178CrossRefGoogle Scholar
  40. 39a.
    Nomura T, Jager C, Kitisaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takasuto S, Fijioka S, Smith J, Kerckhoffs LH, Reid JB, Yokota T (2004) Brassinosteroid deficiency due to truncated 5 -reductase causes dwarfism in the lk mutant of pea. Plant Physiol (In press)Google Scholar
  41. 40.
    O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130: 1974-1982CrossRefPubMedGoogle Scholar
  42. 41.
    O’Neill DP, Ross JJ, Reid JB (2000) Changes in gibberellin A1 levels and response during de-etiolation of pea seedlings. Plant Physiol 124: 805-812CrossRefPubMedGoogle Scholar
  43. 42.
    Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LHJ (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128: 734-741CrossRefPubMedGoogle Scholar
  44. 43.
    Reid JB, Murfet IC, Potts WC (1983) Internode length in Pisum. II. Additional information on the relationship and action of loci Le, La, Cry, Na, and Lm. J Exp Bot 34: 349-364.CrossRefGoogle Scholar
  45. 44.
    Reid JB, Ross JJ (1993) A mutant-based approach, using Pisum sativum, to understanding plant growth. Int J Plant Sci 154: 22-34CrossRefGoogle Scholar
  46. 45.
    Reid JB, Ross JJ, Swain SM (1992) Internode length in Pisum. A new slender mutant with elevated levels of C19 gibberellins. Planta 188: 462-467CrossRefGoogle Scholar
  47. 46.
    Ross JJ, MacKenzie-Hose AK, Davies PJ, Lester DR, Twitchin B, Reid JB (1999) Further evidence for feedback regulation of gibberellin biosynthesis in pea. Physiol Plant 105: 532-538CrossRefGoogle Scholar
  48. 47.
    Ross JJ, O’Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: Integrating the old with the new. J Plant Growth Regul 22: 99-108CrossRefGoogle Scholar
  49. 48.
    Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21: 547-552CrossRefPubMedGoogle Scholar
  50. 49.
    Ross JJ, O’Neill DP, Wolbang CM, Symons GM, Reid JB (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20: 346-353Google Scholar
  51. 50.
    Ross JJ, Reid JB, Dungey HS (1992) Ontogenetic variation in levels of gibberellin A1 in Pisum. Implications for the control of stem elongation. Planta 186: 166-171CrossRefGoogle Scholar
  52. 51.
    Ross JJ, Reid JB, Swain SM, Hasan O, Poole AT, Hedden P, Willis CL (1995) Genetic regulation of gibberellin deactivation in Pisum. Plant J 7: 513-523CrossRefGoogle Scholar
  53. 52.
    Santes CM, Hedden P, Sponsel VM, Reid JB, Garcia-Martinez JL (1993) Expression of the le mutation in young ovaries of Pisum sativum and its effect on fruit development. Plant Physiol 101: 759-764PubMedGoogle Scholar
  54. 53.
    Schaller H (2003) The role of sterols in plant growth and development. Prog Lip Res 42: 163-175CrossRefGoogle Scholar
  55. 54.
    Schultz L, Kerckhoffs LHJ, Klahre U, Yokota T, Reid JB (2001) Molecular characterisation of the brassinosteroid-deficient lkb mutant in pea. Plant Mol Biol 47: 491-498CrossRefPubMedGoogle Scholar
  56. 55.
    Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organspecific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287-297CrossRefPubMedGoogle Scholar
  57. 56.
    Swain SM, Reid JB, Ross JJ (1993) Seed development in Pisum. The lhi allele reduces gibberellin levels in developing seeds, and increases seed abortion. Planta 191: 482-488CrossRefGoogle Scholar
  58. 57.
    Symons GM, Reid JB (2003a) Hormone levels and response during de-etiolation in pea. Planta 216: 422-31PubMedGoogle Scholar
  59. 58.
    Symons GM, Reid JB (2003b) Interactions between light and plant hormones during deetiolation. J Plant Growth Regul 22: 3-14CrossRefGoogle Scholar
  60. 59.
    Symons GM, Reid JB (2004) Brassinosteroids do not undergo long distance transport in pea: Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol (In press)Google Scholar
  61. 60.
    Symons GM, Schultz L, Kerckhoffs LHJ, Davies NW, Gregory D, Reid JB (2002) Uncoupling brassinosteroid levels and de-etiolation in pea. Physiol Plant 115: 311-319CrossRefPubMedGoogle Scholar
  62. 61.
    van Huizen R, Ozga JA, Reinecke DM (1997) Seed and hormonal regulation of gibberellin 20-oxidase expression in pea pericarp. Plant Physiol 115: 123-128PubMedGoogle Scholar
  63. 62.
    Wang Z-Y, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380-383CrossRefPubMedGoogle Scholar
  64. 63.
    Weller JL, Ross JJ, Reid JB (1994) Gibberellins and phytochrome regulation of stem elongation in pea. Planta 192: 489-496CrossRefGoogle Scholar
  65. 64.
    Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110: 1029-1034PubMedGoogle Scholar
  66. 65.
    Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125: 627-633CrossRefPubMedGoogle Scholar
  67. 66.
    Yokota T (1999) Brassinosteroids. In: PJJ Hooykaas, MA Hall, KR Libbenga (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science. pp 277-292Google Scholar
  68. 67.
    Yokota T, Nomura T, Sato T, Tamaki Y (2001) Light regulates brassinosteroid biosynthesis in rice. 17th IPGSA Meeting. Abstract 191.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • James B. Reid
    • 1
  • Gregory M. Symons
    • 1
  • John J. Ross
    • 1
  1. 1.School of Plant ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations