Auxin Biosynthesis and Metabolism

  • Jennifer Normanly
  • Janet P. Slovin
  • Jerry D. Cohen

Abstract

Auxins function at the intersection between environmental and developmental cues and the response pathways that they trigger (Fig. 1). Auxin levels vary dramatically throughout the body and life of the plant, forming gradients that are a central component of its action (4, 5, 14, 20, 34). Accordingly, plants have evolved intricate regulatory networks with considerable redundancy and adaptive plasticity to maintain auxin levels in response to changing environmental and developmental conditions. We refer to this phenomenon as auxin homeostasis; specifically the biosynthesis, inactivation, transport, and inter-conversion pathways that regulate and maintain auxin levels.

Keywords

Hydrolysis Maize Pseudomonas Hull Gall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharoni N, Cohen JD (1986) Identification of IAA conjugates from IAA-treated tobacco leaves and their role in the induction of ethylene. Plant Physiol 80(S):34Google Scholar
  2. 2.
    Bandurski R, Cohen J, Slovin J, and Reinecke D (1995) Auxin biosynthesis and metabolism, in Plant Hormones: Physiology, Biochemistry and Molecular Biology, P Davies, Editor, Kluwer Academic Publishers: Dordrecht, Boston, London. ISBN 0-7923-2984-8. p. 39-65Google Scholar
  3. 3.
    Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis and indole-3-butyric acid - oxidation. J. Plant Growth Regulation. 20:198-216CrossRefGoogle Scholar
  4. 4.
    Benfey P (2002) Auxin action: Slogging out of the swamp. Current Biology 12: R389-R390.CrossRefPubMedGoogle Scholar
  5. 5.
    Berleth T, Mattsson J, Hardtke C (2000) Vascular continuity and auxin signals. Trends in Plant Science 5:387-393CrossRefPubMedGoogle Scholar
  6. 6.
    Brader G, Tas E, Palva E, (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia cartovora. Plant Physiol 126:849-860CrossRefPubMedGoogle Scholar
  7. 7.
    Celenza J, (2001) Metabolism of tyrosine and tryptophan-new genes for old pathways. Current Opinion in Plant Biology 4:234-240CrossRefPubMedGoogle Scholar
  8. 8.
    Chen S and Glawischnig E (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923-937CrossRefPubMedGoogle Scholar
  9. 9.
    Chou J-C, Mulbry WW, Cohen JD (1998) The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence and expression in Escherichia coli. Molecular and General Genetics 259:172-178CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen JD, Bialek K (1984) The biosynthesis of indole-3-acetic acid in higher plants. In: A. Crozier and J.R. Hillman, eds., The biosynthesis and metabolism of plant hormones. Society for Experimental Biology Seminar 23. Cambridge Univ. Press pp. 165-181Google Scholar
  11. 11.
    Cohen JD, Bandurski, RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403-430CrossRefGoogle Scholar
  12. 12.
    Cohen JD, Slovin JP, Hendrickson A (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends in Plant Science 8:197-199CrossRefPubMedGoogle Scholar
  13. 13.
    Cooke TJ, Poli DB, Sztein AE, Cohen, JD (2002) Evolutionary patterns in auxin action. Plant Molecular Biology 49:319-338CrossRefPubMedGoogle Scholar
  14. 14.
    Doerner P (2000) Root patterning: Does auxin provide positional clues? Current Biology 10:R201-R203CrossRefPubMedGoogle Scholar
  15. 15.
    Eklöf S, Åstot C, Sitbon F, Moritz T, Olsson O, and Sandberg G (2000) Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant J 23:279-284.CrossRefPubMedGoogle Scholar
  16. 16.
    Epstein E, Cohen JD, Slovin JP (2002) The biosynthetic pathway for indole-3-acetic acid changes during tomato fruit development. Plant Growth Regulation 38:15-20CrossRefGoogle Scholar
  17. 17.
    Gierl A, Frey M (2001) Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213:493-498CrossRefPubMedGoogle Scholar
  18. 18.
    Glick B, Patten C, Holguin G, Penrose D (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Ontario, Canada: Imperial College Press, 267 pp.Google Scholar
  19. 19.
    Glick B, Saleh S (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Canadian J Microbiology 47:698-705CrossRefGoogle Scholar
  20. 20.
    Hamann T (2001) The role of auxin in apical-basal pattern formation during Arabidopsis embryogenesis. J Plant Growth Regulation 20:292-299CrossRefGoogle Scholar
  21. 21.
    Hemm M, Reugger M, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179-194CrossRefPubMedGoogle Scholar
  22. 22.
    Iyer M, Cohen JD, Epstein E, Slovin JP (1999) An unexpected change in free IAA levels and alteration of fruit ripening in tomatoes transformed with the iaglu gene (Abstract). Amer Soc Plant Physiol. 1999:150Google Scholar
  23. 23.
    Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ. (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem. 276:4350-4356CrossRefPubMedGoogle Scholar
  24. 24.
    Kerk N, Jiang K, Feldmann L (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925-932CrossRefPubMedGoogle Scholar
  25. 25.
    Klee HJ, Lanahan MB (1995) Transgenic plants in hormone biology, in Plant Hormones: Physiology, Biochemistry and Molecular Biology, PJ Davies, Editor, Kluwer Academic Publishers: Dordrecht, Boston, London. ISBN 0-7923-2984-8. p. 340-353Google Scholar
  26. 26.
    Kim G, Tsukaya H (2002) Regulation of the biosynthesis of plant hormones by P450 s. Journal of Plant Research 115:169-177CrossRefPubMedGoogle Scholar
  27. 27.
    Kutz A, Muller A, Hennig P, Kaiser W, Piotrowski M, Weiler E (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30:95-106CrossRefPubMedGoogle Scholar
  28. 28.
    LeClere S, Tellez R, Rampey R, Matsuda S, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biological Chemistry 277:20446-20452CrossRefGoogle Scholar
  29. 29.
    Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology 50:309-332CrossRefGoogle Scholar
  30. 30.
    Ljung K, Östin A, Lioussanne L, Sandberg G (2001) Developmental regulation of indole-3-acetic acid turnover in Scots Pine seedlings. Plant Physiol 125:464-475CrossRefPubMedGoogle Scholar
  31. 31.
    Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regulation 32:219-230CrossRefGoogle Scholar
  32. 32.
    Ludwig-Müller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiol Plant 115:320-329CrossRefPubMedGoogle Scholar
  33. 33.
    Mikkelsen M, Petersen B, Glawischnig E, Jensen A, Andreasson E, Halkier B (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298-308CrossRefPubMedGoogle Scholar
  34. 34.
    Muday G (2001) Auxin and tropisms. J Plant Growth Regulation 20:226-243CrossRefGoogle Scholar
  35. 35.
    Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M. (2001) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25:213-221CrossRefPubMedGoogle Scholar
  36. 36.
    Ngo P, Ozga J, Reinecke D (2002) Specificity of auxin regulation of gibberellin 20- oxidase gene expression in pea pericarp. Plant Molecular Biology 49:439-448CrossRefPubMedGoogle Scholar
  37. 37.
    Nigovic G, Antolic S, Kojic-Prodic B, Kiralj R, Magnus V, Salopek-Sondi B (2000) Correlation of structural and physico-chemical parameters with bioactivity of alkylated derivatives of indole-3-acetic acid, a phytohormone (auxin). Acta Cryst B56:94-111Google Scholar
  38. 38.
    Nigovic B, Kojic-Prodic B, Antolic S, Tomic S, Puntarec V, Cohen JD (1996) Structural studies on monohalogenated derivatives of the phytohormone indole-3-acetic acid (auxin). Acta Cryst B52:332-343Google Scholar
  39. 39.
    Normanly J (1997) Auxin metabolism. Physiol Plant 100:431-442CrossRefGoogle Scholar
  40. 40.
    Normanly J, Bartel B (1999) Redundancy as a way of life-IAA metabolism. Current Opinion in Plant Biology 2:207-213CrossRefPubMedGoogle Scholar
  41. 41.
    Normanly J, Grisafi P, Fink GR, Bartel B (1997) Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9:1781-1790CrossRefPubMedGoogle Scholar
  42. 42.
    Normanly J, Slovin JP, Cohen JP (1995) Rethinking auxin biosynthesis and metabolism. Plant Physiol 107:323-329PubMedGoogle Scholar
  43. 43.
    Oetiker J, Aeschbacher G (1997) Temperature-sensitive plant cells with shunted indole- 3-acetic acid conjugation. Plant Physiol 114:1385-1395PubMedGoogle Scholar
  44. 44.
    Ozga J, Reinecke D (2003) Hormonal interactions in fruit development. J Plant Growth Regulation (in press).Google Scholar
  45. 45.
    Ozga J, Yu J, Reinecke D (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3 -hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137-1146CrossRefPubMedGoogle Scholar
  46. 46.
    Patten C, Glick B (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied Environ Microbiology 68:3795-3801CrossRefGoogle Scholar
  47. 47.
    Patten C, Glick B (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Canadian J Microbiology 48:635-642CrossRefGoogle Scholar
  48. 48.
    Piotrowski M, Schonfelder S, and Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode -cyano-L-alanine hydratase/nitrilase. J Biological Chemistry 276:2616-2621CrossRefGoogle Scholar
  49. 49.
    Rapparini F, Tam Y, Cohen JD, Slovin JP (2002) IAA metabolism in Lemna gibba undergoes dynamic changes in response to growth temperature. Plant Physiol 128:1410-1416CrossRefPubMedGoogle Scholar
  50. 50.
    Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351-367CrossRefPubMedGoogle Scholar
  51. 51.
    Ribnicky D, Cohen JD, Hu W, Cooke TJ (2002) An auxin surge following fertilization in carrots: A mechanism for regulating plant totipotency. Planta 214: 505-509CrossRefPubMedGoogle Scholar
  52. 52.
    Ross J, O'Neill D, Wolbang C, Symons G, Reid, J (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regulation 20:346-353Google Scholar
  53. 53.
    Scherer GF (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Molecular Biology 49:357-372CrossRefPubMedGoogle Scholar
  54. 54.
    Selmar D (1999) Biosynthesis of cyanogenic glycosides, glucosinolates and non protein amino acids, in Biochemistry of Plant Secondary Metabolism, M Wink, Editor, CRC Press: Boca Raton, FL. p. 79-150Google Scholar
  55. 55.
    Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229-238CrossRefPubMedGoogle Scholar
  56. 56.
    Slovin JP, Bandurski RS, Cohen JD (1999) Auxin, in Biochemistry and Molecular Biology of Plant Hormones, P Hooykaas, M Hall, and K Libbenga, Editors, Elsevier Science: Oxford. p. 115-140CrossRefGoogle Scholar
  57. 57.
    Smolen G, Bender J (2002) Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160:323-332PubMedGoogle Scholar
  58. 58.
    Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405-1415CrossRefPubMedGoogle Scholar
  59. 59.
    Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Molecular Biology 49:411-426CrossRefPubMedGoogle Scholar
  60. 60.
    Szmidt-Jaworska A, Kesy J, Kocewicz, J (1997) Transformation of 1-O-(indole-3- acetyl)- -D-glucose into di-O-(indole-3-acetyl)-D-glucose catalysed by enzyme preparations from corn seedlings. Acta Biochmica Polonica 44:215-220Google Scholar
  61. 61.
    Sztein A, Ilic N, Cohen, JD, Cooke TJ (2002) Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: The effect of wounding on the biosynthetic pathway. Plant Growth Regulation 36:201-207CrossRefGoogle Scholar
  62. 62.
    Tam Y, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis thaliana: low steady state levels of indole-3-acetyl-aspartate, indole-3- acetyl-glutamate, and indole-3-acetyl glucose. Plant Physiol 123:589-595CrossRefPubMedGoogle Scholar
  63. 63.
    Tam Y, Normanly J, (2002) Overexpression of a bacterial indole-3-acetyl-L-aspartic acid hydrolase in Arabidopsis thaliana. Physiol Plant 115:513-522CrossRefPubMedGoogle Scholar
  64. 64.
    Tobena-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol J, Souer E, Koes R (2002) FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes and Development 16:753-763CrossRefPubMedGoogle Scholar
  65. 65.
    Vorwerk S, Biernacki S, Hillebrand H, Janzik IAM, Weiler EW, Piotrowski M (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 212:508-516CrossRefPubMedGoogle Scholar
  66. 66.
    Walz A, Park S, Slovin JP, Ludwig-Müller J, Momonoki YS, Cohen JD (2002) A gene encoding a protein modified by the phytohormone indoleacetic acid. Proc. Natl. Acad. USA 99:1718-1723.CrossRefGoogle Scholar
  67. 67.
    Wittstock U, Halkier B (2002) Glucosinolate research in the Arabidopsis era. Trends in Plant Science 7:263-270.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhao Y, Christensen S, Fankhauser C, Cashman J, Cohen, JD, Weigel D, and Chory, J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306-309CrossRefPubMedGoogle Scholar
  69. 69.
    Zhao Y, Hull A, Gupta N, Goss K, Alonso J, Ecker J, Normanly J, Chory J, Celenza J (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450 s CYP79B2 and CYP79B3. Genes and Development 16:3100-3112CrossRefPubMedGoogle Scholar
  70. 70.
    Zook M (1998) Biosynthesis of camalexin from tryptophan pathway intermediates in cell-suspension cultures of Arabidopsis. Plant Physiol 118:1389-1398CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jennifer Normanly
    • 1
  • Janet P. Slovin
    • 2
  • Jerry D. Cohen
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstUSA
  2. 2.U.S. Department of AgricultureBeltsville Agricultural Research Center, Agricultural Research ServiceBeltsvilleUSA
  3. 3.Department of Horticultural ScienceUniversity of MinnesotaSaint PaulUSA

Personalised recommendations