Skip to main content

Salicylic Acid

  • Chapter

Abstract

Plants are the source of many substances used in treating human disease and discomfort. One of the earliest known plant-derived therapeutic compounds originated from the bark of willow trees (Salixspp.) (Fig. 1), which in traditional medicine was chewed to provide relief from pain and inflammation, a practice that can be traced to over two thousand years ago. This ancient remedy was described in writings by the Greek physician Hippocrates (Fifth Century B.C.) and the physician and botanist Pedanius Dioscorides (First Century A.D.), who described the ingestion of willow leaves and bark as a means for relieving pain (20).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila Toll- Dorsal pathway. Annu Rev Cell Dev Biol 12: 393-416

    Article  CAS  PubMed  Google Scholar 

  2. Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583-1592

    Article  CAS  PubMed  Google Scholar 

  3. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57-63

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Klessig D (1991) Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc Natl Acad Sci USA 88: 8179-8183

    Article  CAS  PubMed  Google Scholar 

  5. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883-1886.

    Article  CAS  PubMed  Google Scholar 

  6. Chester KS (1933) The problem of acquired physiological immunity in plants. Quart Rev Biol 8: 275-324

    Article  Google Scholar 

  7. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826-833.

    Article  CAS  PubMed  Google Scholar 

  8. Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92: 6602-6606

    Article  CAS  PubMed  Google Scholar 

  9. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266: 1247-1250

    Article  CAS  PubMed  Google Scholar 

  10. Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12: 279-290

    Article  CAS  PubMed  Google Scholar 

  11. Dewdney J, Reuber TL, Wildermuth MC, Devoto A, Cui J, Stutius LM, Drummond EP, Ausubel FM (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24: 205-218.

    Article  CAS  PubMed  Google Scholar 

  12. Du H, Klessig D (1997) Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiol 113: 1319-1327

    CAS  PubMed  Google Scholar 

  13. Enyedi AJ, Raskin I (1993) Induction of UDP-glucose: salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol 101: 1375-1380

    CAS  PubMed  Google Scholar 

  14. Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA 96: 3292-3297

    Article  CAS  PubMed  Google Scholar 

  15. Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16: 449-455.

    Article  CAS  PubMed  Google Scholar 

  16. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756

    Article  CAS  PubMed  Google Scholar 

  17. Glazebrook J (1999) Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol 2: 280-286

    Article  CAS  PubMed  Google Scholar 

  18. Hennig J, Malamy J, Grynkiewicz G, Indulski J, Klessig DF (1993) Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant J 4: 593-600

    Article  CAS  PubMed  Google Scholar 

  19. Hunt MD, Neuenschwander UH, Delaney TP, Weymann KB, Friedrich LB, Lawton KA, Steiner H-Y, Ryals JA (1996) Recent advances in systemic acquired resistance research: a review. Gene 179: 89-95

    Article  CAS  PubMed  Google Scholar 

  20. Jack DB (1997) One hundred years of aspirin. Lancet 350: 437-439

    Article  CAS  PubMed  Google Scholar 

  21. Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96: 13583-13588

    Article  CAS  PubMed  Google Scholar 

  22. Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Induction of systemic acquired resistance in plants by chemicals. Annu Rev Phytopathol 32: 439-459

    Article  CAS  PubMed  Google Scholar 

  23. Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32: 151-163

    Article  CAS  PubMed  Google Scholar 

  24. Kumar D, Klessig DF (2003) High-affinity Salicylic Acid-Binding Protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA

    Google Scholar 

  25. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5: 325-331

    Article  CAS  PubMed  Google Scholar 

  26. Linthorst H (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10: 123-150

    Article  CAS  Google Scholar 

  27. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403

    Article  CAS  PubMed  Google Scholar 

  28. Métraux J-P, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006

    Article  PubMed  Google Scholar 

  29. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944

    Article  CAS  PubMed  Google Scholar 

  30. Nawrath C, Métraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11: 1393-1404.

    Article  CAS  PubMed  Google Scholar 

  31. Parker JE, Feys BJ, van der Biezen EA, Noël L, Aarts N, Austin MJ, Botella MA, Frost LN, Daniels MJ, Jones JDG (2000) Unravelling R gene-mediated disease resistance pathways in Arabidopsis. Molec Plant Pathol 1: 17-24

    Article  CAS  Google Scholar 

  32. Rairdan GJ, Delaney TP (2002) Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics 161: 803-811

    CAS  PubMed  Google Scholar 

  33. Raskin I (1995) Salicylic Acid. In PJ Davies, ed, Plant Hormones, Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, pp 188-205

    Google Scholar 

  34. Rasmussen JB, Hammerschmidt R, Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol 97: 1342-1347

    Article  CAS  PubMed  Google Scholar 

  35. Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1: 404-411

    Article  CAS  PubMed  Google Scholar 

  36. Ryals J, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809-1819

    Article  CAS  PubMed  Google Scholar 

  37. Ryals J, Uknes S, Ward E (1994) Systemic acquired resistance. Plant Physiol 104: 1109-1112

    CAS  PubMed  Google Scholar 

  38. Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9: 425-439

    Article  CAS  PubMed  Google Scholar 

  39. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97: 11655-11660

    Article  CAS  PubMed  Google Scholar 

  40. Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365-371

    Article  CAS  PubMed  Google Scholar 

  41. Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Molec Plant-Microbe Interact 10: 69-78

    Article  CAS  Google Scholar 

  42. Shulaev V, León J, Raskin I (1995) Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell 7: 1691-1701

    Article  CAS  PubMed  Google Scholar 

  43. Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385: 718-721

    Article  CAS  Google Scholar 

  44. Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. In RK Webster, ed, Annu Rev Phytopathol, Vol 35. Annual Reviews Inc., Palo Alto, pp 235-270

    Google Scholar 

  45. Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13: 63-68.

    Article  CAS  PubMed  Google Scholar 

  46. van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Europ Journal Plant Pathol 103: 753-765

    Article  Google Scholar 

  47. Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: From gene to function. Annu Rev Plant Physiol Plant Mol Biol 48: 703-734

    Article  CAS  PubMed  Google Scholar 

  48. Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959-965.

    Article  CAS  PubMed  Google Scholar 

  49. Weigel RR, Bauscher C, Pfitzner AJ, Pfitzner UM (2001) NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol 46: 143-160.

    Article  CAS  PubMed  Google Scholar 

  50. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565 698

    Article  CAS  PubMed  Google Scholar 

  51. Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3: 809-818

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96: 6523-6528

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15: 2647-2653

    Article  CAS  PubMed  Google Scholar 

  54. Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molec Plant-Microbe Interact 13: 191-202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence P. Delaney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Delaney, T.P. (2010). Salicylic Acid. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_29

Download citation

Publish with us

Policies and ethics