Skip to main content

The Induction of Vascular Tissues by Auxin

  • Chapter
Plant Hormones

Abstract

The vascular system connects the shoot organs with the roots and enables efficient long-distance transport between them. In higher plants it is composed of two kinds of conducting tissues: the phloem, through which organic materials are transported and the xylem, which is the pathway for water and soil nutrients. In angiosperms, the functional conduits of the phloem are the sieve tubes, and the most specialized conduits of the xylem are the vessels (2). Vascular development in a plant is an open type of differentiation, continuing as long as the plant grows from apical and lateral meristems. The continuous development of new vascular tissues enables regeneration of the plant and its adaptation to changes in the environment. The differentiation of vascular tissues along the plant is induced and controlled by longitudinal streams of inductive signals (4, 52).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloni R (1980) Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures. Planta 150: 255-263

    Article  CAS  Google Scholar 

  2. Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38: 179-204

    Article  Google Scholar 

  3. Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In Plant Hormones: Physiology, Biochemistry and Molecular Biology, PJ Davies, ed, Kluwer, Dordrecht, pp 531-546

    Google Scholar 

  4. Aloni R (2001) Foliar and axial aspects of vascular differentiation - hypotheses and evidence. J Plant Growth Regul 20: 22-34

    Article  CAS  Google Scholar 

  5. Aloni R, Barnett JR (1996) The development of phloem anastomoses between vascular bundles and their role in xylem regeneration after wounding in Cucurbita and Dahlia. Planta 198: 595-603

    Article  CAS  Google Scholar 

  6. Aloni R, Jacobs WP (1977) The time course of sieve tube and vessel regeneration and their relation to phloem anastomoses in mature internodes of Coleus. Amer J Bot 64: 615-621

    Article  Google Scholar 

  7. Aloni R, Peterson CA (1990) The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182: 583-590

    Article  Google Scholar 

  8. Aloni R, Sachs T (1973) The three-dimensional structure of primary phloem systems. Planta 113: 345-353

    Article  Google Scholar 

  9. Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis - a new hypothesis. Differentiation 24: 203-208

    Article  Google Scholar 

  10. Aloni R, Raviv A, Peterson CA (1991) The role of auxin in the removal of dormancy callose and resumption of phloem activity in Vitis vinifera. Can J Bot 69: 1825-1832

    Article  CAS  Google Scholar 

  11. Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216: 841-853

    CAS  PubMed  Google Scholar 

  12. Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The Never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117: 841-847

    Article  CAS  PubMed  Google Scholar 

  13. Avsian-Kretchmer O, Cheng J-C, Chen L, Moctezuma E, Sung ZR (2002) IAA distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130: 199-209

    Article  CAS  PubMed  Google Scholar 

  14. Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121: 4171-4182

    CAS  PubMed  Google Scholar 

  15. Baluška F, Šamaj J, Menzel D (2003) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13: 282-285

    Article  PubMed  Google Scholar 

  16. Barker-Bridgers M, Ribnicky DM, Cohen JD, Jones AM (1998) Red-light regulated growth. II. Changes in the abundance of indoleacetic acid in the maize mesocotyl. Planta 204: 207-211

    Article  CAS  Google Scholar 

  17. Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5: 387-393

    Article  CAS  PubMed  Google Scholar 

  18. Booker J, Chatfield S, Leyser O. (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15: 495-507

    Article  CAS  PubMed  Google Scholar 

  19. Carland FM, Berg BL, FitzGerald JN, Jinamornphongs S, Nelson T, Keith B (1999) Genetic regulation of vascular tissue patterning in Arabidopsis. Plant Cell 11: 2123-2137

    Article  CAS  PubMed  Google Scholar 

  20. Carland FM, Fuioka S, Takatsuto A, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell: 14: 2045-2058.

    Article  CAS  PubMed  Google Scholar 

  21. Carland FM, McHale NA (1996) LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122:1811-1819

    CAS  PubMed  Google Scholar 

  22. Clay NK, Nelson T (2002) VH1, a provascular cell-specific receptor kinase that influence leaf cell patterns in Arabidopsis. Plant Cell 14: 2707-2722

    Article  CAS  PubMed  Google Scholar 

  23. Dengler N, Kang J (2001) Vascular patterning and leaf shape. Curr Opin Plant Biol 4: 50-56

    Article  CAS  PubMed  Google Scholar 

  24. Deyholos MK, Cordner G, Beebe D, Sieburth LE (2000) The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127: 3205-3213

    CAS  PubMed  Google Scholar 

  25. Esau K (1965) Vascular Differentiation in Plants, Holt, Rinehart and Winston, New York

    Google Scholar 

  26. Friml J, Benkova Elilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661-673

    Article  CAS  PubMed  Google Scholar 

  27. Friml J, Plame K (2002) Polar auxin transport - old questions and new concepts? Plant Mol Biol 49: 273-284

    Article  CAS  PubMed  Google Scholar 

  28. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissues. Science 282: 2226-2230

    Article  PubMed  Google Scholar 

  29. Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425-428

    Article  CAS  PubMed  Google Scholar 

  30. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17: 1405-1411

    Article  CAS  PubMed  Google Scholar 

  31. Hobbie L, McGovern M, Hurwitz LR, Pierro A, Yang Liu N, Bandyopadhyay A, Estelle M (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127: 23-32

    CAS  PubMed  Google Scholar 

  32. Horner HT, Lersten NR, Wirth CL (1994) Quantitative survey of sieve tube distribution in foliar terminal veins of ten dicot species. Amer J Bot 81: 1267-1274

    Article  Google Scholar 

  33. Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Amer J Bot 39: 301-309

    Article  CAS  Google Scholar 

  34. Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann MB (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Gene Dev 1: 86-96

    Article  CAS  Google Scholar 

  35. Koizumi K, Sugiyama M, Fukuda H (2000) A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127: 3197-3204

    CAS  PubMed  Google Scholar 

  36. Kuriyama H, Fukuda H (2001) Regulation of tracheary element differentiation. J Plant Growth Regul 20: 35-51

    Article  CAS  Google Scholar 

  37. Leitch MA (2001) Vessel-element dimensions and frequency within the most current growth increment along the length of Eucalyptus globulus stems. Trees 15: 353-357

    Article  Google Scholar 

  38. Lersten NR (1990) Sieve tubes in foliar vein endings: review and quantitative survey of Rudbeckia laciniata (Asteraceae). Amer J Bot 77: 1132-1141

    Article  Google Scholar 

  39. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131: 1327-1339

    Article  CAS  PubMed  Google Scholar 

  40. Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979-2991

    CAS  PubMed  Google Scholar 

  41. Morris DA, Kadir GO, Barry AJ (1973) Auxin transport in intact pea seedlings (Pisum sativum L.): the inhibition of transport by 2,3,5-triiodobenzoic acid. Planta 110: 173-182

    Article  CAS  Google Scholar 

  42. Müller A, Düchting P, Weiler EW (2002) A multiplex GC-MS/MS technique for the sensitivity and qualitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56

    Article  PubMed  Google Scholar 

  43. Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9: 1121-1135

    Article  CAS  PubMed  Google Scholar 

  44. Palme P, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Poin Plant Biol 2: 375-381

    Article  CAS  Google Scholar 

  45. Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255-260

    Article  CAS  PubMed  Google Scholar 

  46. Przemeck GKH, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200: 229-237

    Article  CAS  PubMed  Google Scholar 

  47. Roberts LW, Gahan PB, Aloni R (1988) Vascular Differentiation and Plant Growth Regulators. Springer-Verlag, Berlin

    Google Scholar 

  48. Romano CP, Hein MB, Klee HJ (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev 5: 438-446

    Article  CAS  PubMed  Google Scholar 

  49. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472

    Article  CAS  PubMed  Google Scholar 

  50. Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33: 263-275

    Google Scholar 

  51. Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9: 151-262

    Article  Google Scholar 

  52. Sachs T (2000) Integrating cellular and organismal aspects of vascular differentiation. Plant Cell Physiol 41: 649-656

    CAS  PubMed  Google Scholar 

  53. Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121: 1179-1190

    Article  CAS  PubMed  Google Scholar 

  54. Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In RA Savidge, JR Barnett, R Napier, eds, Cell and Molecular Biology of Wood Formation, BIOS Scientific Publishers, Oxford, pp 169-188

    Google Scholar 

  55. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15: 2648-2653

    Article  CAS  PubMed  Google Scholar 

  56. Turner S, Sieburth LE (2002) Vascular patterning. The Arabidopsis Book, CR Somerville, EM Meyerowitz, eds, American Society of Plant Biologists. Rockville, MD, http://www.aspb.org/publications/arabidopsis/toc.cfm

  57. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Nat Acad Sci USA 93: 9282-9286

    Article  CAS  PubMed  Google Scholar 

  58. Ullrich CI, Aloni R (2000) Vascularization is a general requirement for growth of plant and animal tumours. J Exp Bot 51: 1951-1960

    Article  CAS  PubMed  Google Scholar 

  59. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971

    Article  CAS  PubMed  Google Scholar 

  60. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRRANFERASE1 function. Plant Cell 15: 612-625

    Article  CAS  PubMed  Google Scholar 

  61. Ye Z-H (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53: 183-202

    Article  CAS  PubMed  Google Scholar 

  62. Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97: 925–931

    Article  CAS  PubMed  Google Scholar 

  63. Akiyama K, Hayashi H (2008) Plastid-derived strigolactones show the way to roots for symbionts and parasites. New Phytol 178: 695–698

    Article  CAS  PubMed  Google Scholar 

  64. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51: 1019–1029

    Article  CAS  PubMed  Google Scholar 

  65. Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9: 315–321

    Article  CAS  PubMed  Google Scholar 

  66. Beveridge CA (2006) Axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9: 35–40

    Article  CAS  PubMed  Google Scholar 

  67. Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12: 224–230

    Article  CAS  PubMed  Google Scholar 

  68. Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 10.1104/pp.108.134783

    Google Scholar 

  69. Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14: 364–372

    Article  CAS  PubMed  Google Scholar 

  70. Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol 142: 812–819

    Article  CAS  PubMed  Google Scholar 

  71. Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin and strigolactone in regulating shoot branching. Plant Physiol 149: 1929–1944

    Article  CAS  PubMed  Google Scholar 

  72. Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interaction among two novel signals and auxin in pea. Plant Cell 17: 464–474

    Article  CAS  PubMed  Google Scholar 

  73. Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A, Rameau C, Turnbull CGN, Beveridge CA (2007) Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol 143: 1418–1428

    Article  CAS  PubMed  Google Scholar 

  74. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455: 189–194

    Article  CAS  PubMed  Google Scholar 

  75. Hayward A, Stirnberg P, Beveridge CA, Leyser O. (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151: 400–412

    Article  CAS  PubMed  Google Scholar 

  76. Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ on line

    Google Scholar 

  77. Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139: 920–934

    Article  CAS  PubMed  Google Scholar 

  78. McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149: 46–55

    Article  CAS  PubMed  Google Scholar 

  79. Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59: 67–74

    Article  CAS  PubMed  Google Scholar 

  80. Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46: 617–626

    Article  CAS  PubMed  Google Scholar 

  81. Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69: 429–435

    Article  CAS  PubMed  Google Scholar 

  82. Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50: 80–94 517

    Article  CAS  PubMed  Google Scholar 

  83. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195–200

    Article  CAS  PubMed  Google Scholar 

  84. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227: 125–132

    Article  CAS  PubMed  Google Scholar 

  85. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179: 484–494

    Article  CAS  PubMed  Google Scholar 

  86. Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manag Sci 65: 467–470

    Article  CAS  PubMed  Google Scholar 

  87. Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65: 478–491

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roni Aloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aloni, R. (2010). The Induction of Vascular Tissues by Auxin. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_22

Download citation

Publish with us

Policies and ethics