Advertisement

Four-Week-Long Tabun Low-Level Exposure in Rats

  • Milos P. Stojiljkovic
  • Zoran A. Milovanovic
  • Vesna Kilibarda
  • Dubravko Bokonjic
  • Danka Stefanovic
  • Biljana Antonijevic
Conference paper
Part of the NATO Science Series book series (NAII, volume 174)

Abstract

Prolonged administration of sublethal doses of organophosphorus cholinesterase inhibitors results in adaptation to their toxicity. In order to investigate this phenomenon, we exposed rats to 0.2, 0.3 or 0.4 LD50 of tabun sc daily during four weeks. AChE activities in erythrocytes, diaphragm and brain were inhibited dose-dependently after days 7 and 14 of the study and started to recover thereafter, except after 0.4 LD50. Tabun 0.3 LD50 decreased body weight gain, food and water consumption during the first two weeks of the study. Spontaneous locomotor activity was significantly increased in the same interval and decreased thereafter. These findings support the assumption that both the biochemical and receptor mechanisms are responsible for the occurrence of tolerance to tabun in rats.

Keywords

Water Consumption Body Weight Gain AChE Activity Nerve Agent Spontaneous Locomotor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Du Bois, K.P. (1963) Toxicological evaluation of the anticholinesterase agents. In: Koelle, G.B. (editor) Cholinesterases and anticholinesterase agents, Springer-Verlag, Berlin, pp. 833–859.Google Scholar
  2. 2.
    Du Bois, K.B. et al. (1949) J. Pharmacol. Exp. Ther. 95, 79–91.Google Scholar
  3. 3.
    Du Bois, K.B. and Coon, J.M. (1950) J Pharmacol. Exp. Ther. 99, 376–393.Google Scholar
  4. 4.
    Du Bois, K.B. et al. (1953) A.M.A. Arch. Industr. Hyg. 8, 350–358.Google Scholar
  5. 5.
    Du Bois, K.B. and Cotter, G.J. (1955) A.M.A. Arch. Industr. Hlth 11, 53–60.Google Scholar
  6. 6.
    Barnes, J.M. and Denz, F.A. (1954) Br. J. Industr. Med. 11, 11–19.Google Scholar
  7. 7.
    Bombinski, T.J. and Du Bois, K.P. (1958) A.M.A. Arch. Industr. Hlth 17, 192–199.Google Scholar
  8. 8.
    Russell, R.W. et al. (1975) J. Pharmacol. Exp. Ther. 192, 73–85.PubMedGoogle Scholar
  9. 9.
    Dulaney, M.D. Jr. et al. (1985) Acta Pharmacol. Toxicol. 57, 234–241.CrossRefGoogle Scholar
  10. 10.
    Bajgar, J. (1992) Br. J. Industr. Med. 49, 648–653.Google Scholar
  11. 11.
    Husain, K. et al. (1993) J. Appl. Toxicol. 13, 43–145.CrossRefGoogle Scholar
  12. 12.
    Haley, W. and Kurt, T.L. (1997) J. Am. Med. Assoc. 277, 231–237.CrossRefGoogle Scholar
  13. 13.
    Brown, M.A. and Kelley, A.B. (1998) 18, 393–408.Google Scholar
  14. 14.
    Ray, D.E. (1998) Toxicol. Lett. 102–103, 527–533.CrossRefGoogle Scholar
  15. 15.
    Kassa, J. et al. (2001) Pharmacol. Toxicol. 88, 209–212.PubMedCrossRefGoogle Scholar
  16. 16.
    Stojiljkovic, M.P. (1997) Prophylaxis of poisoning with soman, Andrejevic Foundation, Belgrade.Google Scholar
  17. 17.
    Ellman, G.L. et al. (1961) Biochem. Pharmacol. 7, 88–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Glow, P.H. et al. (1966) J. Comp. Physiol. Psychol. 61, 295–299.PubMedCrossRefGoogle Scholar
  19. 19.
    D’Mello, G.D. (1992) Neurobehavioural toxicology of anticholinesterases. In: Ballantyne, B. et al. (editors). Clinical and experimental toxicology of organophosphates and carbamates, Butterworth-Heinemann, Oxford, pp. 61–74.Google Scholar
  20. 20.
    Sterri, S.H. et al. (1980) Acta Pharmacol. Toxicol. 46, 1–7.CrossRefGoogle Scholar
  21. 21.
    Sterri, S.H. et al. (1981) Acta Pharmacol. Toxicol. 49, 8–13.CrossRefGoogle Scholar
  22. 22.
    Sterri, S.H. et al. (1982) Acta Pharmacol. Toxicol. 50, 326–331.CrossRefGoogle Scholar
  23. 23.
    Koehn, G.L. and Karczmar, A.G. (1978) Prog. Neuro-Psychopharmacol. 2, 169–177.CrossRefGoogle Scholar
  24. 24.
    Romano, J.A. Jr. and Landauer, M.R. (1986) Fundam. Appl. Toxicol. 6, 62–68.CrossRefGoogle Scholar
  25. 25.
    D’Mello, G.D. and Duffy, E.A.M. (1985) Fundam. Appl. Toxicol. 5, S169 - S174.PubMedCrossRefGoogle Scholar
  26. 26.
    Landauer, M.R. and Romano, J.A. (1984) Neurobehav. Toxicol. Teratol. 6, 239–243.PubMedGoogle Scholar
  27. 27.
    Raffaele K. et al. (1987) Pharmacol. Biochem. Behav. 27, 407–412.CrossRefGoogle Scholar
  28. 28.
    Romano, J.A. et al. (1985) Proc. 5th Annu. Chem. Def. Biosci. Rev., Columbia, USA, 29–31 May 1985.Google Scholar
  29. 29.
    Rondeau, D.B. et al. (1981) Neurobehav. Toxicol. Teratol. 3, 313–319.Google Scholar
  30. 30.
    Stojiljkovic, M.P. et al. (2001) Proc. 7th Int. Symp. Protect. Chem. Biol. Warfare Agents, Stockholm, Sweden, 15–19 June 2001.Google Scholar
  31. 31.
    Stevens, J.T. et al. (1972) J. Pharmacol. Exp. Ther. 181, 576–583.Google Scholar
  32. 32.
    Sivam, S.P. et al. (1983) J. Neurochem. 40, 1414–1422.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Milos P. Stojiljkovic
    • 1
  • Zoran A. Milovanovic
    • 1
  • Vesna Kilibarda
    • 1
  • Dubravko Bokonjic
    • 1
  • Danka Stefanovic
    • 2
  • Biljana Antonijevic
    • 2
  1. 1.National Poison Control Centre & Institute for Scientific InformationMilitary Medical AcademySerbia
  2. 2.Institute of Toxicological ChemistryFaculty of PharmacyBelgradeFederal Republic of Yugoslavia

Personalised recommendations