Advertisement

MHD Simulations of Crab’s Jet and Torus

  • Serguei Komissarov
  • Yuri Lyubarsky

Abstract

The Crab nebula is regarded as one of the most important “cosmic laboratories” in astrophysics, which has made a bigger impact on the development of astronomy than any other single object beyond the solar system. The most intriguing recent result is the completely unexpected discovery of a peculiar “jet-torus” structure in the inner part of the nebula. Similar structures were found later in other Crab-like nebulae. This discovery clearly indicates significant anisotropy of the wind from the Crab pulsar which has been ignored so far in simplified theoretical models of the nebula. Fortunately, the impressive progress in computational relativistic magnetohydrodynamics in recent years has made possible to study the Crab nebula without making such a drastic simplification of the problem. In this paper we present the results of the first study of such kind. They provide a likely explanation of the jet-torus pattern and show that the flow in the nebula is much more complex than it has been widely believed.

Keywords

pulsars supernova remnants ISM: the Crab nebula ISM: jets and outflows MHD shock waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beskin, V.S., Kuznetsova, I.V. and Rafikov, R.R.: 1988, MNRAS 299, 341.ADSCrossRefGoogle Scholar
  2. Bogovalov, S.V. and Tsinganos, K.: 1999, MNRAS 305, 211.ADSCrossRefGoogle Scholar
  3. Bogovalov, S.V.: 1999, A&A 349, 101.ADSGoogle Scholar
  4. Bogovalov, S.V. and Khangoulyan, D.V.: 2002, MNRAS 336, L53.ADSCrossRefGoogle Scholar
  5. Begelman, M.C.: 1998, ApJ 493, 291.ADSCrossRefGoogle Scholar
  6. Chiueh, T., Li, Z.-Y. and Begelman, M.C.: 1988, ApJ 505, 835.ADSCrossRefGoogle Scholar
  7. Gaensler, B.M., Arons, J., Kaspi, V.M., Pivovaroff, M.J., Kawai, N. and Tamura, K.: 2002, ApJ 569, 878.ADSCrossRefGoogle Scholar
  8. Helfand, D.J., Gotthelf, E.V. and Halpern, J.P.: 2001, ApJ 556, 380.ADSCrossRefGoogle Scholar
  9. Hester J.J., Scowen, P.A., Saukrit, R. and 18 co-authors: 1995, ApJ 448, 240.ADSCrossRefGoogle Scholar
  10. Hester J.J., Mori, K., Burrows, D. and 5 co-authors: 2002, ApJ 577, L49.ADSCrossRefGoogle Scholar
  11. Kennel, C.F. and Coroniti, F.V.: 1984, ApJ 283, 694.ADSCrossRefGoogle Scholar
  12. Kirk, J.G. and Skjæraasen, O.: 2003, ApJ 591, 366.ADSCrossRefGoogle Scholar
  13. Komissarov, S.S.: 1999, MNRAS 308, 1069.ADSCrossRefGoogle Scholar
  14. Komissarov, S.S. and Lyubarsky, Y.E.: 2003, MNRAS 344, L93.ADSCrossRefGoogle Scholar
  15. Komissarov, S.S. and Lyubarsky, Y.E.: 2004, MNRAS 349, 779.ADSCrossRefGoogle Scholar
  16. Lyubarsky, Y.E.: 2002, MNRAS 329, L34.ADSCrossRefGoogle Scholar
  17. Lyubarsky, Y.E.: 2003, MNRAS 345, 153.ADSCrossRefGoogle Scholar
  18. Lyubarsky, Y.E. and Eichler, D.: 2001, ApJ 562, 494.ADSCrossRefGoogle Scholar
  19. Michel, F.C.: 1991, Theory of Neutron Star Magnetospheres, University of Chicago Press, Chicago, IL.Google Scholar
  20. Pavlov, G.G., Zavlin, V.E., Sanwal, D., Burwitz, V. and Garmire, G.P.: 2001, ApJ 552, L129.ADSCrossRefGoogle Scholar
  21. Rees, M.J. and Gunn, J.E.: 1974, MNRAS 167, 1.ADSGoogle Scholar
  22. Scargle, J.D.: 1969, ApJ 156, 401.ADSCrossRefGoogle Scholar
  23. Weisskopf, M.C., Hester, J.J., Tennant, A.F. and 8 co-authors: 2000, ApJ 536, L81.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Serguei Komissarov
    • 1
  • Yuri Lyubarsky
    • 2
  1. 1.School of MathematicsUniversity of LeedsLeedsUK
  2. 2.Ben-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations