Plant Defence Compounds Against Botrytis Infection

  • Peter van Baarlen
  • Laurent Legendre
  • Jan A. L. van Kan

Plants possess a range of tools for combating a Botrytis infection. This chapter will describe three types of pre-formed and induced plant defence compounds and discuss their effectiveness in restricting Botrytis infection. Case studies are presented on several types of secondary metabolites: stilbenes including resveratrol, saponins including ??-tomatin, cucurbitacins, proanthocyanidins and tulipalin A. Evidence is presented suggesting that Botrytis species have evolved mechanisms to counteract some of these defence responses. Secondly, we discuss the role of structural barriers and cell wall modification in preventing penetration. Finally the contribution of PR proteins to resistance is discussed.


Grape Berry Botrytis Cinerea Grey Mould Incompatible Interaction Laccase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Adrian M, Jeandet P, Bessis R and Joubert JM (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with aluminium chloride (AlCl3). Journal of Agricultural and Food Chemistry 44: 1979-1981CrossRefGoogle Scholar
  2. Adrian M, Jeandet P, Douillet-Breuil A-C, Tesson L and Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. Journal of Agricultural and Food Chemistry 48: 6103-6105CrossRefPubMedGoogle Scholar
  3. Adrian M, Jeandet P, Veneau J, Weston LA and Bessis R (1997) Biological activity of resveratrol, a stilbene compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. Journal of Chemical Ecology 23: 1689-1702CrossRefGoogle Scholar
  4. Adrian M, Rajaei H, Jeandet P, Veneau J and Bessis R (1998) Resveratrol oxidation in Botrytis cinerea conidia. Phytopathology 88: 472-476CrossRefPubMedGoogle Scholar
  5. Ayran A, Wilson B, Strauss C and Williams P (1987) The properties of glucosides of Vitis vinifera and the comparison of their ȕ-D-glucosidase activity with that of exogenous enzymes. An assessment of possible application of enology. American Journal of Enology and Viticulture 38: 182-188Google Scholar
  6. Bachmann O and Blaich R (1979) Vorkommen und Eigenschaften kondensierter Tannine in Vitaceae. Vitis 18: 106-116Google Scholar
  7. Bais AJ, Murphy PJ and Dry IB (2000) The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Australian Journal of Plant Physiology 27: 425-433CrossRefGoogle Scholar
  8. Ban T, Shiozaki S, Ogata T and Horiuchi S (2000) Effect of abscisic acid and shading treatment on the levels of anthocyanin and resveratrol in skin of Kyoho grape berry. Acta Horticulturae No. 514: 83-89Google Scholar
  9. Bar-Nun N and Mayer AM (1989) Cucurbitacins - repressors of induction of laccase formation. Phytochemistry 28: 1369-1371CrossRefGoogle Scholar
  10. Bar-Nun N and Mayer AM (1990) Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. Phytochemistry 29: 787-791CrossRefGoogle Scholar
  11. Bavaresco L, Pezzutto S, Ragga A, Ferrari F and Trevisan M (2001) Effect of nitrogen supply on trans-resveratrol concentration in berries of Vitis vinifera L. cv. Cabernet Sauvignon. Vitis 40: 229-230Google Scholar
  12. Beijersbergen, JCM (1969) Į-methylene-Ȗ-butyrolactone uit tulpen. Thesis, Leiden University (pp. 1-93) Bronder-Offset, Rotterdam, The NetherlandsGoogle Scholar
  13. Beijersbergen, JCM and Lemmers CBG (1972) Enzymic and non-enzymic liberation of tulipalin A (Į-methylene-Ȗ-butyrolactone) in extracts of tulip. Physiological Plant Pathology 2: 265-270CrossRefGoogle Scholar
  14. Benito EP, ten Have A, van’t Klooster JW and Van Kan JAL (1998) Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of Plant Pathology 104: 207-220CrossRefGoogle Scholar
  15. Bergman, BHH, Beijersbergen JCM, Overeem JC and Kaars Sijpesteijn A (1967) Isolation and identification of Į-methylene-Ȗ-butyrolactone, a fungitoxic substance from tulips. Recueil des Travaux Chimiques des Pays-Bas 86: 709-714Google Scholar
  16. Breiteneder H and Ebner C (2000) Molecular and biochemical classification of plant-derived food allergens. Journal of Allergy and Clinical Immunology 106: 27-36CrossRefPubMedGoogle Scholar
  17. Breuil AC, Adrian M, Pirio N, Meunier P, Bessis R and Jeandet P (1998) Metabolism of stilbene phytoalexins by Botrytis cinerea: 1. Characterization of a resveratrol dehydrodimer. Tetrahedron Letters 39: 537-540CrossRefGoogle Scholar
  18. Breuil AC, Jeandet P, Adrian M, Chopin F, Pirio N, Meunier P and Bessis R (1999) Characterization of a pterostilbene dehydrodimer produced by laccase of Botrytis cinerea. Phytopathology 89: 298-302CrossRefPubMedGoogle Scholar
  19. Busam G, Junghanns KT, Kneusel RE, Kassemyer HH and Matern U (1997) Characterization and expression of caffeoyl-coenzyme A 3-O-methyltransferase proposed for the induced resistance response of Vitis vinifera L. Plant Physiology 115: 1039-1048CrossRefPubMedGoogle Scholar
  20. Cantos E, Espin JC and Tomas-Barberan FGA (2001) Postharvest induction modelling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: a new “functional” fruit. Journal of Agricultural and Food Chemistry 49: 5052-5058CrossRefPubMedGoogle Scholar
  21. Chiou RYY (2002) Resveratrol, a promising phytochemical in grape juices, wines and peanuts. Food Science and Agricultural Chemistry 4: 8-14Google Scholar
  22. Chung IM, Park MR, Chun JC and Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormone in peanut plants. Plant Science 164: 103-109CrossRefGoogle Scholar
  23. Cichewicz RH, Kouzi SA and Hamann MT (2000) Dimerisation of resveratrol by grapevine pathogen Botrytis cinerea. Journal of Natural Products 63: 29-33CrossRefPubMedGoogle Scholar
  24. Coertze S and Holz G (1999) Surface colonisation, penetration and lesion formation on grapes inoculated fresh and after cold storage with single airborne conidia of Botrytis cinerea. Plant Disease 83: 917-924CrossRefGoogle Scholar
  25. Creasy LL and Coffee M (1988) Phytoalexin production potential of grape berries. Journal of the American Society for Horticultural Science 113: 230-234Google Scholar
  26. Creasy LL and Creasy MT (1998) Grape chemistry and the significance of resveratrol: an overview. Pharmaceutical Biology 36 (supplement): 8-13CrossRefGoogle Scholar
  27. Daniel M and Purkayastha RP (1995) Handbook of Phytoalexin Metabolism and Action. Marcel Dekker, New York, USAGoogle Scholar
  28. Datta K, Muthukrishnan S and Datta SK (1999) Expression and function of PR-protein genes in transgenic plants. In: Datta SK and Muthukrishnan S (eds) Pathogenesis-related Proteins in Plants. (pp. 261-278) CRC Press, Boca Raton, Florida, USACrossRefGoogle Scholar
  29. Derckel JP, Audran JC, Haye B, Lambert B and Legendre L (1998) Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and beta-1,3-glucanases of ripening grape berries. Physiologia Plantarum 104: 56-64CrossRefGoogle Scholar
  30. Derckel JP, Baillieul F, Manteau S, Audran JC, Haye B, Lambert B and Legendre L (1999) Differential induction of grapevine defences by two strains of Botrytis cinerea. Phytopathology 89: 197-203CrossRefPubMedGoogle Scholar
  31. De Waard MA (1997) Significance of ABC transporters in fungicide sensitivity and resistance. Pesticide Science 51: 271-275CrossRefGoogle Scholar
  32. Diaz J, Ten Have A and Van Kan JAL (2002) The role of ethylene and wound signalling in resistance of tomato to Botrytis cinerea. Plant Physiology 129: 1341-1351CrossRefPubMedGoogle Scholar
  33. Dinan L, Whiting P, Girault JP, Lafont R, Dhadialla TS, Cress DE, Mugat B, Antoniewski C and Lepesant JA (1997) Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochemical Journal 327: 643-650PubMedGoogle Scholar
  34. Dixon RA and Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097CrossRefPubMedGoogle Scholar
  35. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS and Wang LJ (2002) The phenylpropanoid pathway and plant defence - a genomics perspective. Molecular Plant Pathology 3: 371-390CrossRefPubMedGoogle Scholar
  36. Dmitriev AP, Tverskoy LA, Kozlovsky AG and Grodzinsky DM (1990) Phytoalexins from onion and their role in disease resistance. Physiological and Molecular Plant Pathology 37: 235-244CrossRefGoogle Scholar
  37. Douillet-Breuil A-C, Jeandet P, Adrian M and Bessis R (1999) Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. Journal of Agricultural and Food Chemistry 47: 4456-4461CrossRefPubMedGoogle Scholar
  38. Duncan KLK, Duncan MD, Alley MC and Sausville E (1996) Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochemical Pharmacology 52 1553-1560CrossRefPubMedGoogle Scholar
  39. Elad Y (1997) Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biological Reviews 72: 381-422CrossRefGoogle Scholar
  40. Fregoni C, Bavaresco L, Cantu E, Petegolli D, Vizzon D, Chiusa G and Trevisan M (2000) Advances in understanding stilbene (resveratrol, epsilon-viniferin) - grapevine relationship. Acta Horticulturae No. 526: 467-477Google Scholar
  41. Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. Journal of Agricultural and Food Chemistry 50: 5751-5780CrossRefPubMedGoogle Scholar
  42. Garrod, B, Lewis BG, Brittain MJ and Davies WP (1982) Studies on the contribution of lignin and suberin to the impedance of wounded carrot root tissue to fungal invasion. New Phytologist 90: 99-108CrossRefGoogle Scholar
  43. Gawel R (1998) Red wine astringency: A review. Australian Journal of Grape and Wine Research 4: 74-96CrossRefGoogle Scholar
  44. Gomez-Miranda B, Ruperez P and Leal A (1981) Changes in chemical composition during germination of Botrytis cinerea sclerotia. Current Microbiology 6: 243-246CrossRefGoogle Scholar
  45. Gonen L, Viterbo A, Cantone F, Staples RC and Mayer AM (1996) Effect of cucurbitacins on mRNA coding for laccase in Botrytis cinerea. Phytochemistry 42: 321-324CrossRefPubMedGoogle Scholar
  46. Grimmig B, Schubert R, Fischer R, Hain R, Schreier PH, Betz C, Langebartels C, Ernst D and Sandermann HJr (1997) Ozone- and ethylene-induced regulation of a grapevine resveratrol synthase promoter in transgenic tobacco. Acta Physiologiae Plantarum No. 19: 467-474CrossRefGoogle Scholar
  47. Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vorman B, Wiese W, Schmeltzer E, Schreider PH, Stocker RH and Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153-156CrossRefPubMedGoogle Scholar
  48. Hart JH (1981) Role of phytostilbenes in decay and disease resistance. Annual Review of Phytopathology 19: 437-458CrossRefGoogle Scholar
  49. Haslam E (1966) Chemistry of Vegetable Tannins. Academic Press, London, UKGoogle Scholar
  50. Haslam E (1974) Polyphenol-protein interactions. Biochemical Journal 139: 285-288PubMedGoogle Scholar
  51. Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology 3: 315-319CrossRefPubMedGoogle Scholar
  52. Heath MC (2002) Cellular interactions between biotrophic fungal pathogens and host or non-host plants. Canadian Journal of Plant Pathology 24: 259-264CrossRefGoogle Scholar
  53. Hebert C, Charles MT, Willemot C, Gauthier L, Khanizadeh S and Cousineau J (2002) Strawberry proanthocyanidins: biochemical markers for Botrytis cinerea resistance and shelf-life predictability. Acta Horticulturae No. 567: 659-662Google Scholar
  54. Hills G, Stellwaag-Kittler F, Huth G and Schlösser E (1981) Resistance of grapes in different developmental stages to Botrytis cinerea. Journal of Phytopathology 102: 328-338CrossRefGoogle Scholar
  55. Hoffmann-Sommergruber K (2000) Plant allergens and pathogenesis-related proteins - what do they have in common? International Archives of Allergy and Immunology 122: 155-166CrossRefPubMedGoogle Scholar
  56. Hoos G and Blaich R (1990) Influence of resveratrol on germination of conidia and mycelial growth of Botrytis cinerea and Phomopsis viticola. Journal of Phytopathology 129: 102-110CrossRefGoogle Scholar
  57. Hung LM, Chen JK, Huang SS, Lee RS and Su MJ (2000) Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovascular Research 47: 549-555CrossRefPubMedGoogle Scholar
  58. Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J and Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant Journal 8: 97-109CrossRefPubMedGoogle Scholar
  59. Jeandet P, Bessis R and Gautheron B (1991) The production of resveratrol (3,5,4’-trihydroxystilbene) by grape berries in different developmental stages. American Journal of Enology and Viticulture 42: 41-46Google Scholar
  60. Jeandet P, Bessis R, Sbaghi M and Meunier P (1995a) Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. Journal of Phytopathology 143: 135-139CrossRefGoogle Scholar
  61. Jeandet P, Sbaghi M, Bessis R and Meunier P (1995b) The potential relationship of stilbene (resveratrol) synthesis to anthocyanin content in grape berry skins. Vitis 34: 91-94Google Scholar
  62. Jeandet P, Adrian M, Breuil AC, Sbaghi M, Joubert JM, Weston LA, Harmon R and Bessis R (1998) Chemical stimulation of phytoalexin synthesis in plants as an approach to crop protection. Recent Research Developments in Agricultural Food Chemistry 2: 501-511Google Scholar
  63. Jersch S, Scherer C, Huth G and Schlösser E (1989) Proanthocyanidins as basis for quiescence of Botrytis cinerea in immature strawberry fruits. Journal of Plant Disease and Protection 96: 365-378Google Scholar
  64. Kauffmann S, Legrand M, Geoffroy P and Fritig B (1987) Biological function of “pathogenesis-related” proteins: four PR proteins of tobacco have 1,3-beta-glucanase activity. EMBO Journal 6: 3209-3216PubMedGoogle Scholar
  65. Keller M, Viret O, and Cole FM (2003) Botrytis cinerea infection in grape flowers: defence reaction, latency and disease expression. Phytopathology 93: 316-322CrossRefPubMedGoogle Scholar
  66. Kennedy JA, Hayasaka Y, Vidal S, Waters EJ and Jones GP (2001) Composition of grape skin proanthocyanidins at different stages of berry development. Journal of Agricultural and Food Chemistry 49: 5348-5355CrossRefPubMedGoogle Scholar
  67. Keukens EAJ, De Vrije T, Van den Boom C, De Waard P, Plasman HH, Thiel F, Chupin V, Jongen WMF and De Kruijff B (1995) Molecular basis of glycoalkaloid induced membrane disruption. Biochimica et Biophysica Acta 1240: 216-228CrossRefPubMedGoogle Scholar
  68. Kobayashi S, Ding CK, Nakamura Y, Nakajima I and Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Reports 19: 904-910CrossRefGoogle Scholar
  69. Kowalski SP, Domek JM, Sanford LL and Deahl KL (2000) Effect of alpha-tomatine and tomatidine on the growth and development of the Colorado potato beetle (Coleoptera: Chrysomelidae): studies using synthetic diets. Journal of Entomological Science 35: 290-300Google Scholar
  70. Langcake P (1981) Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, epsilon-viniferin, alpha-viniferin and pterostilbene. Physiological Plant Pathology 18: 213-226Google Scholar
  71. Langcake P and McCarthy WV (1979) The relationship between resveratrol production to infection of grapevine leaves by Botrytis cinerea. Vitis 18: 244-253Google Scholar
  72. Langcake P and Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology 9: 77-86CrossRefGoogle Scholar
  73. Langcake P and Pryce RJ (1977a) A new class of phytoalexins from grapevine. Experientia 33: 151-152CrossRefGoogle Scholar
  74. Langcake P and Pryce RJ (1977b) The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16: 1193-1196CrossRefGoogle Scholar
  75. Langcake P and Pryce RJ (1977c) Oxidative dimerisation of 4-hydroxystilbenes in vitro: production of a grapevine phytoalexin mimic. Journal of the Chemical Society, Chemical Communications 7: 208-210CrossRefGoogle Scholar
  76. Langcake P, Cornford CA and Pryce RJ (1979) Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry 18: 1025-1027CrossRefGoogle Scholar
  77. Larronde F, Gaudillere JP, Krisa S, Decendit A, Deffieux G, Merillon JM (2003) Air-borne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants. American Journal of Enology and Viticulture 54: 63-66Google Scholar
  78. Lawton K, Uknes S, Friedrich L, Gaffney T, Alexander D, Goodman R, Metraux JP, Kessmann H, Ahl Goy P, Gut Rella M, Ward E and Ryals J (1993) The molecular biology of systemic acquired resistance. In: Fritig B and Legrand M (eds) Mechanisms of Plant defence Responses. (pp. 422-467) Kluwer Academic Publisher, Dordrecht, The NetherlandsGoogle Scholar
  79. Leckband G and Lorz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theoretical and Applied Genetics 96: 1004-1012CrossRefGoogle Scholar
  80. Link, KP and Walker JC (1933) The isolation of catechol from pigmented onion scales and its significance in relation to disease resistance in onions. Journal of Biological Chemistry 100: 379-383Google Scholar
  81. Lippmann B, Mascher R, Balko C and Bergmann H (2000) UV induction of trans-resveratrol biosynthesis in the leaves of greenhouse- and in vitro-grown potatoes (Solanum tuberosum L.). Journal of Applied Botany 74: 160-163Google Scholar
  82. Liswidowati FM, Melchior F, Hohmann F, Schwer B and Kindl H (1991) Induction of stilbene by Botrytis cinerea in cultured grapevine cells. Planta 183: 307-314CrossRefGoogle Scholar
  83. Magee JB, Smith BJ and Rimando A (2002) Resveratrol content of muscadine berries is affected by disease control spray program. HortScience 37: 358-361Google Scholar
  84. Mansfield JW (1980) Mechanisms of resistance to Botrytis. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis. (pp. 181-218) Academic Press, London, UKGoogle Scholar
  85. Manteau S, Abouna S, Lambert B and Legendre L (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiology Ecology 43: 359-366CrossRefPubMedGoogle Scholar
  86. McClellan WD and Hewitt WB (1973) Early Botrytis rot of grapes: time of infection and latency of Botrytis cinerea Pers. in Vitis vinifera L. Phytopathology 63: 1151-1157Google Scholar
  87. McLusky, SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P and Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3'-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant Journal 17: 523-534CrossRefGoogle Scholar
  88. Mellersh DG and Heath MC (2001) Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration. Plant Cell 13: 413-424CrossRefPubMedGoogle Scholar
  89. Mitchell HJ, Hall JL and Barber MS (1994) Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiology 104: 551-556PubMedGoogle Scholar
  90. Montero C, Cristescu SM, Jimenez JB, Orea JM, Te Lintel Hekkert S, Harren FJM and Gonzalez Urena A (2003) Trans-resveratrol and grape disease resistance. A dynamic study by high-resolution laser based techniques. Plant Physiology 131: 129-138CrossRefPubMedGoogle Scholar
  91. Morales M, Alcantara J and Ros Barcelo A (1997) Oxidation of trans-resveratrol by a hypodermal peroxidase isoenzyme from gamay rouge grape (Vitis vinifera) berries. American Journal of Enology and Viticulture 48: 33-38Google Scholar
  92. Morales M, Ros Barcelo A and Pedreno MA (2000) Plant stilbenes: recent advances in their chemistry and biology. In: Hemantaranjan A (ed.) Advances in Plant Physiology. Vol. 3 (pp. 39-70) Scientific Publishers, Jodhpur, IndiaGoogle Scholar
  93. Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK and Muthukrishnan S (eds) Pathogenesis-related Proteins in Plants. (pp. 261-278) CRC Press, Boca Raton, Florida, USAGoogle Scholar
  94. Noble AC (1990) Bitterness and astringency in wine. In: Rouseff RL (ed.) Developments in Food Science 25. Bitterness in Foods and Beverages. (pp. 145-158) Elsevier, New York, NY, USAGoogle Scholar
  95. O'Neill TM and Mansfield JW (1982) Mechanisms of resistance to Botrytis in narcissus bulbs. Physiological Plant Pathology 20: 243-256CrossRefGoogle Scholar
  96. Paul B, Chereyathmanjiyil A, Masih I, Chapuis L and Benoit A (1998) Biological control of Botrytis cinerea grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiology Letters 165: 65-70CrossRefGoogle Scholar
  97. Pezet R (1998) Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiology Letters 167: 203-208CrossRefGoogle Scholar
  98. Pezet R and Pont V (1988a) Mise en évidence de ptérostilbène dans les grappes de Vitis vinifera. Plant Physiology and Biochemistry 26: 603-607Google Scholar
  99. Pezet R and Pont V (1988b) Activité antifongique dans les baies de Vitis vinifera: effets d’acides organique et du ptérostilbène. Revue Suisse de Viticulture et d’Arboriculture Horticole 20: 303-309Google Scholar
  100. Pezet R and Pont V (1992) Differing biochemical and histological studies of two grape cultivars in the view of their respective susceptibility and resistance to Botrytis cinerea. In: Verhoeff K, Malathrakis NE and Williamson B (eds) Recent Advances in Botrytis Research. (pp. 93-98) Pudoc Scientific Publishers, Wageningen, The NetherlandsGoogle Scholar
  101. Pezet R and Pont V (1995) Mode of toxic action of Vitaceae stilbenes on fungal cells. In: Daniel M and Purkayastha RP (eds) Handbook of Phytoalexin Metabolism and Action. (pp. 317-331) Marcel Dekker Inc., New York, USA Google Scholar
  102. Pezet R, Pont V and Hoang-Van K (1991) Evidence for oxidative detoxification of pterostilbene and resveratrol by a laccase-like stilbene oxidase produced by Botrytis cinerea. Physiological and Molecular Plant Pathology 39: 441-450CrossRefGoogle Scholar
  103. Pezet R, Pont V and Hoang-Van K (1992) Enzymatic detoxification of stilbenes by Botrytis cinerea and inhibition by grape berries proanthocyanidins. In: Verhoeff K, Malathrakis NE and Williamson B (eds) Recent Advances in Botrytis Research. (pp. 87-92) Pudoc Scientific Publishers, Wageningen, The NetherlandsGoogle Scholar
  104. Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K and Viret O (2003a) Aį-viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. Journal of Agricultural and Food Chemistry 51: 5488-5492CrossRefGoogle Scholar
  105. Pezet R, Viret O, Perret C and Tabacchi R (2003b) Latency of Botrytis cinerea Pers.: Fr. and biochemical studies during growth and ripening of two grape cultivars, respectively susceptible and resistant to grey mould. Journal of Phytopathology 151: 208-214Google Scholar
  106. Pont V and Pezet R (1990) Relationship between the chemical structure and the biological activity of hydroxystilbenes against Botrytis cinerea. Journal of Phytopathology 130: 1-8CrossRefGoogle Scholar
  107. Pool RM, Creasy LL and Frackelton AS (1981) Resveratrol and the viniferins, their application to screening for disease resistance in grape breeding programs. Vitis 20: 136-145Google Scholar
  108. Porter WL and Schwartz JH (1962) Isolation and description of the pectinase-inhibiting tannins of grape leaves. Journal of Food Science 27: 416-418CrossRefGoogle Scholar
  109. Prieur C, Rigaud J, Cheynier V and Moutounet M (1994) Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry 36: 781-784CrossRefGoogle Scholar
  110. Prusky D (1996) Pathogen quiescence in postharvest diseases. Annual Review of Phytopathology 34: 413-434CrossRefPubMedGoogle Scholar
  111. Punja ZK and Zhang YY (1993) Plant chitinases and their roles in resistance to fungal diseases. Journal of Nematology 25: 526-540PubMedGoogle Scholar
  112. Quidde T, Osbourn AE and Tudzynski P (1998) Detoxification of alpha-tomatine by Botrytis cinerea. Physiological and Molecular Plant Pathology 52: 151-165CrossRefGoogle Scholar
  113. Quidde T, Büttner P and Tudzynski P (1999) Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning and functional analysis of a gene coding for a putative avenacinase. European Journal of Plant Pathology 105: 273-283CrossRefGoogle Scholar
  114. Roggero JP and Garcia-Parrilla C (1995) Effect of ultraviolet irradiation on resveratrol and changes in resveratrol and various of its derivatives in the skins of ripening grapes. Sciences des Aliments 15: 411-422Google Scholar
  115. Romero-Perez AI, Ibern-Gomez M, Lamuela-Raventos RM and de la Torre-Boronat MC (1999) Piceid, the major resveratrol derivative in grape juices. Journal of Agricultural and Food Chemistry 47: 1533-1536CrossRefPubMedGoogle Scholar
  116. Roudet J, Prudet S and Dubos B (1992) Relationship between grey mould of grapes and laccase activity in the must. In: Verhoeff K, Malathrakis NE and Williamson B (eds) Recent Advances in Botrytis Research. (pp. 83-86) Pudoc Scientific Publishers, Wageningen, The NetherlandsGoogle Scholar
  117. Salzman RA, Tikhonova I, Bordelon BP, Hasegawa PM and Bressan RA (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defence response during fruit ripening in grapes. Plant Physiology 117: 465-472CrossRefPubMedGoogle Scholar
  118. Sandrock RW and VanEtten HD (1998) Fungal sensitivity to and enzymatic degradation of the phytoanticipin Į-tomatine. Phytopathology 88: 137-143CrossRefPubMedGoogle Scholar
  119. Savouret JF and Quesne M (2002) Resveratrol and cancer: a review. Biomedicine and Pharmacotherapy 56: 84-87CrossRefGoogle Scholar
  120. Sbaghi M, Jeandet P, Faivre B, Bessis R and Fournioux JC (1995) Development of methods using phytoalexin (resveratrol) assessment as a selection criterion to screen grapevine in vitro cultures for resistance to grey mould (Botrytis cinerea). Euphytica 86: 41-47CrossRefGoogle Scholar
  121. Sbaghi M, Jeandet P, Bessis R and Leroux P (1996) Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevine. Plant Pathology 45: 139-144CrossRefGoogle Scholar
  122. Schönbeck, F and Schroeder C (1972) Role of antimicrobial substances (tuliposides) in tulips attacked by Botrytis spp. Physiological Plant Pathology 2: 91-99CrossRefGoogle Scholar
  123. Schönbeck F and Schlösser E (1976). Preformed substances as potential protectants. In: Heitefuss R and Williams PH (eds) Physiological Plant Pathology. (pp. 653-678) Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  124. Schoonbeek H, Del Sorbo G and de Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions 14: 562-571CrossRefPubMedGoogle Scholar
  125. Schoonbeek H, Raaijmakers JM and de Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Molecular Plant-Microbe Interactions 15: 1165-1172CrossRefPubMedGoogle Scholar
  126. Schouten A, Wagemakers L, Stefanato FL, Van der Kaaij RM and Van Kan JAL (2002) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Molecular Microbiology 43: 883-894CrossRefPubMedGoogle Scholar
  127. Shimizu S, Kataoka M, Shimizu K, Hirakata H, Sakamoto K and Yamada H (1992) Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum. European Journal of Biochemistry 209: 383-390CrossRefPubMedGoogle Scholar
  128. Simmons CR (1994) The physiology and molecular biology of plant 1,3-beta-D-glucanases and 1,3:1,4-beta-D-glucanases. Critical Reviews in Plant Sciences 13: 325-387CrossRefGoogle Scholar
  129. Souquet JM, Cheynier V, Brossaud F and Moutounet M (1996) Polymeric proanthocyanidins from grape skins. Phytochemistry 43: 509-512CrossRefGoogle Scholar
  130. Staples RC and Mayer AM (1995) Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiology Letters 134: 1-7CrossRefGoogle Scholar
  131. Stewart A and Mansfield JW (1985) The composition of wall alterations and appositions (reaction material) and their role in the resistance of onion bulb scale epidermis to colonisation by Botrytis allii. Plant Pathology 34: 25-37CrossRefGoogle Scholar
  132. Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M and Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defence against pathogens. Biochimie 75: 687-706CrossRefPubMedGoogle Scholar
  133. VanEtten HD, Mansfield JW, Bailey JA and Farmer EE (1994) Two classes of plant antibiotics: Phytoalexins versus 'phytoanticipins'. Plant Cell 9: 1191-1192CrossRefGoogle Scholar
  134. Van Loon LC (1985) Pathogenesis-related proteins. Plant Molecular Biology 4: 111-116CrossRefGoogle Scholar
  135. Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology 103: 753-765CrossRefGoogle Scholar
  136. Van Loon LC (1999) Occurrence and properties of plant pathogenesis-related proteins. In: Datta SK and Muthukrishnan S (eds) Pathogenesis-related Proteins in Plants. (pp. 1-20) CRC Press, Boca Raton, Florida, USAGoogle Scholar
  137. Verhoeff K and Liem JI (1975) Toxicity of tomatine to Botrytis cinerea, in relation to latency. Phytopathologische Zeitschrift 82: 333-338CrossRefGoogle Scholar
  138. Viterbo A, Yagen B and Mayer AM (1993a) Cucurbitacins, 'attack' enzymes and laccase in Botrytis cinerea. Phytochemistry 32: 61-65CrossRefGoogle Scholar
  139. Viterbo A, Yagen B, Rosenthal R and Mayer AM (1993b) Dependence of activity of cucurbitacin in repression of Botrytis laccase on its structure. Phytochemistry 33: 1313-1315CrossRefGoogle Scholar
  140. Viterbo A, Staples RC, Yagen B and Mayer AM (1994) Selective mode of action of cucurbitacin in the inhibition of laccase formation in Botrytis cinerea. Phytochemistry 35: 1137-1142CrossRefGoogle Scholar
  141. Waterhouse AL and Lamuela Raventos RM (1994) The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochemistry 37: 571-573CrossRefGoogle Scholar
  142. Waters EJ, Shirley NJ and Williams PJ (1996) Nuisance proteins of wines are grape pathogenesis-related proteins. Journal of Agricultural and Food Chemistry 44: 3-5CrossRefGoogle Scholar
  143. Waters EJ, Hayasaka Y, Tattersall DB, Adams KS and Williams PJ (1998) Sequence analysis of grape (Vitis vinifera) berry chitinases that cause haze formation in wines. Journal of Agricultural and Food Chemistry 46: 4950-4957CrossRefGoogle Scholar
  144. Weinges K, Bähr W, Ebert W, Göritz G and Marx HD (1969) Konstitution, Entstehung und Bedeutung der flavonoid- Gerbstoffe. Forschung Chemische Organische Naturstoffe 27: 158-259Google Scholar
  145. Zhu Q, Maher EA, Masoud S, Dixon RA and Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807-812CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Peter van Baarlen
    • 1
  • Laurent Legendre
    • 2
  • Jan A. L. van Kan
    • 1
  1. 1.Laboratory of PhytopathologyWageningen University Plant SciencesNetherlands
  2. 2.Centre for Horticulture and Plant SciencesUniversity of Western SydneyPenrith SouthAustralia

Personalised recommendations