Skip to main content

Botrytis cinerea Perturbs Redox Processes as an Attack Strategy in Plants

  • Chapter
Botrytis: Biology, Pathology and Control

Electron transport processes play vital roles in the functioning of biological systems, and oxygen is the driving force for many of these reactions. A consequence of this is the production of several oxygen-derived molecules, known as active oxygen species (AOS), whose reactivity is greater than that of oxygen itself. There is increasing evidence that Botrytis cinerea exploits the production of AOS in colonising plant tissues, and this is reviewed in the present chapter. Specific considerations are given to the interactions between hydrogen peroxide and other AOS that are produced by the fungus and the plantbased antioxidant systems in determining the outcome of the infection process. In addition, biochemical processes that appear to be of importance for lesion development are discussed and the evidence to support them critically evaluated. These are considered in separate sections dealing with the perturbation of the free radical chemistry and transition metal redox processes (particularly those involving iron), the regulation of enzymes (of both plant and fungal origin), the production of toxic metabolites in the host, and host signalling and programmed cell death. Attention is also drawn to the need for the scientific community to adopt standard procedures (both chemical and biological) to facilitate comparison between results from different groups. Finally, consideration is given to strategies that could be used to resolve some of the outstanding questions relating to our understanding of the Botrytis infection process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14. References

  • Able AJ (2003) Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221: 137-143

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Rakwal R and Jwa N-S (2001) Stress signalling molecules involved in defense and protein phosphatase 2A inhibitors modulate OsCATC expression in rice (Oryza sativa) seedlings. Journal of Plant Physiology 158: 1349-1355

    Article  CAS  Google Scholar 

  • Baginsky S, Tiller K, Pfannschmidt T and Link G (1999) PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription. Plant Molecular Biology 39: 1013-1023

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV and Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3: 199-208

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP (1999) Role of active oxygen species and NO in plant defence responses. Current Opinion in Plant Biology 2: 287-294

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP and Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective. Physiological and Molecular Plant Pathology 51: 347-366

    Article  CAS  Google Scholar 

  • Boon PJ, Marinho HS, Oosting R and Mulder GJ (1999) Glutathione conjugation of 4-hydroxy-trans-2,3-nonenal in the rat in vivo, the isolated perfused liver and erythrocytes. Toxicology and Applied Pharmacology 159: 214-223

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M and Inze D (1994) Superoxide dismutase in plants. Critical Reviews in Plant Sciences 13: 199-218

    Article  CAS  Google Scholar 

  • Bratt RP, Brown AE and Mercer PC (1988) A role for hydrogen peroxide in degradation of flax fibre by Botrytis cinerea. Transactions of the British Mycological Society 91: 481-488

    Article  CAS  Google Scholar 

  • Briat J-F and Lobréaux S (1997) Iron transport and storage in plants. Trends in Plant Science 2: 187-193

    Article  Google Scholar 

  • Chagué V, Elad Y, Barakat R, Tudzynski P and Sharon A (2002) Ethylene biosynthesis in Botrytis cinerea. FEMS Microbial Ecology 40: 143-149

    Article  Google Scholar 

  • Choi GJ, Lee HJ and Cho KY (1997) Involvement of catalase and superoxide dismutase in resistance of Botrytis cinerea to dicarboximide fungicide vinclozolin. Pesticide Biochemistry and Physiology 59: 1-10

    Article  CAS  Google Scholar 

  • Colmenares AJ, Aleu J, Durán-Patrón R, Collado IG and Hernández-Galán R. (2002a) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. Journal of Chemical Ecology 28: 997-1005

    Article  CAS  Google Scholar 

  • Colmenares AJ, Durán-Patrón RM, Hernández-Galán R and Collado IG (2002b) Four new lactones from Botrytis cinerea. Journal of Natural Products 65: 1724-1726

    Article  CAS  Google Scholar 

  • Company P and Gonzalez-Bosch C (2003) Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display. Biochemical and Biophysical Research Communications 304: 825-830

    Article  PubMed  CAS  Google Scholar 

  • Cristescu SM, De Martinis D, te Lintel Hekkert S, Parker DH and Harren FJ (2002) Ethylene production by Botrytis cinerea in vitro and in tomatoes. Applied and Environmental Microbiology 68: 5342-5350

    Article  PubMed  CAS  Google Scholar 

  • Cutler HG, Parker SR, Ross SA, Crumley FG and Schreiner PR (1996) Homobotcinolide: a biologically active natural homolog of botcinolide from Botrytis cinerea. Bioscience Biotechnology and Biochemistry 60: 656-658

    Article  CAS  Google Scholar 

  • Danon A and Mayfield SP (1994) Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 266: 1717-1719

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Inzé D and Van Breusegem F (2001) Catalase-deficient tobacco plants: tools for in planta studies on the role of hydrogen peroxide. Redox Report 6: 37-42

    Article  PubMed  CAS  Google Scholar 

  • Deák M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z and Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nature Biotechnology 17: 192-196 ; Erratum in Nature Biotechnology 1999, 17: 393

    Article  PubMed  Google Scholar 

  • Deighton N, Muckenschnabel I, Colmenares AJ, Collado IG and Williamson B (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57: 689-692

    Article  PubMed  CAS  Google Scholar 

  • Deighton N, Muckenschnabel I, Goodman BA and Williamson B (1999) Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. The Plant Journal 20: 485-492

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA and Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT and Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology 127: 159-172

    Article  PubMed  CAS  Google Scholar 

  • Djajanegara I, Holtzapffel R, Finnegan PM, Hoefnagel MH, Berthold DA, Wiskich JT and Day DA (1999) A single amino acid change in the plant alternative oxidase alters the specificity of organic acid activation. FEBS Letters 454: 220-224

    Article  PubMed  CAS  Google Scholar 

  • Dutton MV and Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology 42: 881-895

    Article  CAS  Google Scholar 

  • Edlich W, Lorenz G, Lyr H, Nega E and Pommer E-H (1989) New aspects on the infection mechanism of Botrytis cinerea Pers. Netherlands Journal of Plant Pathology 95 (Supplement 1): 53-62

    Article  CAS  Google Scholar 

  • Elad Y (1992) The use of antioxidants (free radical scavengers) to control grey and white moulds in various crops. Plant Pathology 41: 417-426

    Article  CAS  Google Scholar 

  • Enyedi AJ (1999) Induction of salicylic acid biosynthesis and systemic acquired resistance using the active oxygen species generator rose bengal. Journal of Plant Physiology 154: 106-112

    CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proceedings of the National Academy of Sciences of the USA 92: 10237-10241

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ and Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine 11: 81-128

    Article  PubMed  CAS  Google Scholar 

  • Farooq A and Tahara S (2000a) Oxidative metabolism of ambrox and sclareolide by Botrytis cinerea. Zeitschrift für Naturforschung [C] 55: 341-346

    CAS  Google Scholar 

  • Farooq A and Tahara S. (2000b) Biotransformation of two cytotoxic terpenes, alpha-santonin and sclareol by Botrytis cinerea. Zeitschrift für Naturforschung [C] 55: 713-717

    CAS  Google Scholar 

  • Feng Z, Hu W, Amin S and Tang MS (2003) Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells. Biochemistry 42: 7848-7854

    Article  PubMed  CAS  Google Scholar 

  • Fenton HJH (1899) Oxidation of certain organic acids in the presence of ferrous salts. Proceedings of the Chemical Society 15: 224

    Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G and Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal 35: 193-205

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C and Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. The Plant Journal 23: 817-824

    Article  PubMed  CAS  Google Scholar 

  • Fukuda DS and Brannon DR (1971) Oxidation of alcohols by Botrytis cinerea. Applied Microbiology 21: 550-551

    PubMed  CAS  Google Scholar 

  • Garcia-Ferris C and Moreno J (1993) Redox regulation of enzymic activity and proteolytic susceptibility of ribulose-1,5-bisphosphate carboxylase/oxygenase from Euglena gracilis. Photosynthesis Research 35: 55-56

    Article  CAS  Google Scholar 

  • Gechev T, Gadjev I, Van Breusegem F, Inze D, Dukiandjiev S, Toneva V and Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences 59: 708-714

    Article  PubMed  CAS  Google Scholar 

  • Gil-ad NL, Bar-Nun N and Mayer AM (2001) The possible function of the glucan sheath of Botrytis cinerea: effects on the distribution of enzyme activities. FEMS Microbiology Letters 199: 109-113

    Article  PubMed  CAS  Google Scholar 

  • Gil-ad NL, Bar-Nun N, Noy T and Mayer AM (2000) Enzymes of Botrytis cinerea capable of breaking down hydrogen peroxide. FEMS Microbiology Letters 190: 121-126

    Article  PubMed  CAS  Google Scholar 

  • Gil-ad NL and Mayer AM (1999) Evidence for rapid breakdown of hydrogen peroxide by Botrytis cinerea. FEMS Microbiology Letters 176: 455-461

    Article  CAS  Google Scholar 

  • Gomès E, Sagot E, Gaillard C, Laquitaine L, Poinssot B, Sanejouand Y-H, Delrot S and Coutos-Thévenot P (2003) Nonspecific lipid-transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Molecular Plant-Microbe Interactions 16: 456-464

    Article  PubMed  Google Scholar 

  • Goodman BA, Glidewell SM, Arbuckle CM, Bernardin S, Cook TR and Hillman JR (2002) An EPR study of free radical generation during maceration of uncooked vegetables. Journal of the Science of Food and Agriculture 82: 1208-1215

    Article  CAS  Google Scholar 

  • Goodman BA and Newton AC (2004) Effects of drought stress and its sudden relief on free radical processes in barley. Journal of the Science of Food and Agriculture (in press)

    Google Scholar 

  • Govrin EM and Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology 10: 751-757

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM and Levine A (2002) Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defence responses but does not induce systemic acquired resistance (SAR). Plant Molecular Biology 48: 267-276

    Article  PubMed  CAS  Google Scholar 

  • Grant JJ, Yun BW and Loake GJ (2000) Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. The Plant Journal 24: 569-582

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G, Leverentz M, Silkowski H, Gill N and Sanchez-Serrano JJ (2000) Lipid hydroperoxide levels in plant tissues. Journal of Experimental Botany 51: 1363-1370

    Article  PubMed  CAS  Google Scholar 

  • Haber F and Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of The Royal Society A 147: 332

    Article  CAS  Google Scholar 

  • Hell R and Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216: 541-551

    PubMed  CAS  Google Scholar 

  • Hoffman RM and Heale JB (1989) Effects of free radical scavengers on 6-methoxymellein accumulation and resistance to Botrytis cinerea in carrot root slices. Mycological Research 92: 25-27

    Article  CAS  Google Scholar 

  • Jakob U, Muse W, Eser M and Bardwell JC (1999) Chaperone activity with a redox switch. Cell 96: 341-352

    Article  PubMed  CAS  Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine 9: 515-540

    Article  PubMed  CAS  Google Scholar 

  • Jiang M and Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant, Cell and Environment 26: 929-939

    Article  PubMed  CAS  Google Scholar 

  • Joseph-Horne T, Babij J, Wood PM, Hollomon D and Sessions RB (2000) New sequence data enable modelling of the fungal alternative oxidase and explain an absence of regulation by pyruvate. FEBS Letters 481: 141-146

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G and Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-640

    Article  PubMed  CAS  Google Scholar 

  • Keates SE, Loewus FA, Helms GL and Zink DL (1998) A5-O-(Ä®-D-galactopyranosyl)-D-glycero-pent-2-enono-1,4-lactone: characterization in the oxalate-producing fungus, Sclerotinia sclerotiorum. Phytochemistry 49: 2397-2401

    Article  PubMed  CAS  Google Scholar 

  • Konetschny-Rapp S, Jung G, Huschka H-G and Winkelmann G (1988) Isolation and identification of the principal siderophore of the plant pathogenic fungus Botrytis cinerea. Biology of Metals 1: 90-98

    Article  CAS  Google Scholar 

  • KuĨniak E and Skáodowska M (1999) The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves. Plant Science 148: 69-76

    Article  Google Scholar 

  • KuĨniak E and Skáodowska M (2001) Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Science 160: 723-731

    Article  Google Scholar 

  • Lamb C and Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48: 251-275

    Article  PubMed  CAS  Google Scholar 

  • Lane BG (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life 53: 67-75

    Article  PubMed  CAS  Google Scholar 

  • Lapsker Z and Elad Y (2001) Involvement of reactive oxygen species and antioxidant enzymes in the disease caused by Botrytis cinerea on bean leaves and in its biological control by means of Trichoderma harzianum T39. IOBC/WPRS Bulletin 24 (3): 21-25

    Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF and Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. Journal of Biological Chemistry 268: 24559-24563

    PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R and Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Maynard CA, Allen RD and Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology 45: 619-629

    Article  PubMed  CAS  Google Scholar 

  • Liere K and Link G (1997) Chloroplast endoribonuclease p54 involved in RNA 3’-end processing is regulated by phosphorylation and redox state. Nucleic Acids Research 25: 2403-2408

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Oeljeklaus S, Gerhardt B and Tudzynski B (1998) Purification and characterization of glucose oxidase of Botrytis cinerea. Physiological and Molecular Plant Pathology 53: 123-132

    Article  CAS  Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52: 193-210

    Article  CAS  Google Scholar 

  • Loewus FA, Saito K, Suto RK and Maring E (1995) Conversion of D-arabinose to D-erythroascorbic acid and oxalic acid in Sclerotinia sclerotiorum. Biochemical and Biophysical Research Communications 212: 196-203

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA and Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO Journal 19: 6770-6777

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Staples RC and Gil-ad NL (2001) Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58: 33-41

    Article  PubMed  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanisms of the reduction of oxygen and other Hill reagents. Archives of Biochemistry and Biophysics 33: 65-67

    Article  CAS  Google Scholar 

  • Membre N, Bernier F, Staiger D and Berna A (2000) Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211: 345-354

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Herr EH, Orvar BL, Van Camp W, Willekens H, Inze D and Ellis BE (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proceedings of the National Academy of Sciences of the USA 96: 14165-14170

    Article  PubMed  CAS  Google Scholar 

  • Morita S, Kaminaka H, Masumura T and Tanaka K (1999) Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant and Cell Physiology 40: 417-422

    CAS  Google Scholar 

  • Mou Z, Fan W and Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944

    Article  PubMed  CAS  Google Scholar 

  • Muckenschnabel I, Goodman BA, Deighton N, Lyon GD and Williamson B (2001a) Botrytis cinerea induces the formation of free radicals in fruits of Capsicum annuum at positions remote from the site of infection. Protoplasma 218: 112-116

    Article  CAS  Google Scholar 

  • Muckenschnabel I, Williamson B, Goodman BA, Lyon GD, Stewart D and Deighton N (2001b) Markers for oxidative stress associated with soft rots in French beans (Phaseolus vulgaris) infected by Botrytis cinerea. Planta 212: 376-381

    Article  CAS  Google Scholar 

  • Muckenschnabel I, Goodman BA, Williamson B, Lyon GD and Deighton N (2002) Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products. Journal of Experimental Botany 53: 207-214

    Article  PubMed  CAS  Google Scholar 

  • Muckenschnabel I, Schulze Gronover C, Deighton N, Goodman BA, Lyon GD, Stewart D and Williamson B (2003) Oxidative effects in uninfected tissue in leaves of French bean (Phaseolus vulgaris) containing soft rots caused by Botrytis cinerea. Journal of the Science of Food and Agriculture 83: 507-514

    Article  CAS  Google Scholar 

  • Mysore KS, Crasta OR, Tuori RP, Swirsky PB and Martin GB (2002) Comprehensive transcript profiling of Pt0- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. The Plant Journal 32: 299-315

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z and Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. Journal of Agricultural and Food Chemistry 51: 2992-2999

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G and Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signalling. Plant Cell 15: 939-951

    Article  PubMed  CAS  Google Scholar 

  • Patnaik D and Khurana P (2001) Germins and germin like proteins: an overview. Indian Journal of Experimental Biology 39: 191-200

    PubMed  CAS  Google Scholar 

  • Poinssot B, Vandelle E, Bentejac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thevenot P and Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defence reactions unrelated to its enzymatic activity. Molecular Plant-Microbe Interactions 16: 553-564

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H and Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology 130: 1143-1151

    Article  PubMed  CAS  Google Scholar 

  • Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring K-M, Siewers V, Tenberge KB, Tudzynski B and Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Molecular Plant Pathology 15: 17-27

    Article  Google Scholar 

  • Salvador ML and Klein U (1999) The redox state regulates RNA degradation in the chloroplast of Chlamydomonas reinhardtii. Plant Physiology 121: 1367-1374

    Article  PubMed  CAS  Google Scholar 

  • Satô M (1980) Reactivation by copper of phenolase pre-inactivated by oxalate. Phytochemistry 19: 1931-1933

    Article  Google Scholar 

  • Schoonbeek H, Del Sorbo G and De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions 14: 562-571

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B and Van Kan JAL (2002) Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology 3: 227-238

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philosophical Transactions of the Royal Society of London Series B - Biological Sciences 355: 1455-1464

    Article  CAS  Google Scholar 

  • Sroka Z and Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology 41: 753-758

    Article  PubMed  CAS  Google Scholar 

  • Stefanato F, Raats EM and Van Kan JAL (2003) Deletion of a glyoxal oxidase gene causes a severe conditional growth defect in Botrytis cinerea. Proceedings of 8th International Congress of Plant Pathology, Christchurch, New Zealand. L2-8. (Abstract)

    Google Scholar 

  • Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T and Mueller MJ (2003) Cyclopentenone isoprostanes induced by reactive oxygen species trigger defence gene activation and phytoalexin accumulation in plants. The Plant Journal 34: 363-375

    Article  PubMed  CAS  Google Scholar 

  • Thomas SW, Rasmussen SW, Glaring MA, Rouster JA, Christiansen SK and Oliver RP (2001) Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genetics and Biology 33: 195-211

    Article  PubMed  CAS  Google Scholar 

  • Tommasi F, Paciolla C, De Pinto MC and De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. Journal of Experimental Botany 52: 1647-1654

    Article  PubMed  CAS  Google Scholar 

  • Urbanek H, Gajewska E, Karwowska R and Wielanek M (1996) Generation of superoxide anion and induction of superoxide dismutase and peroxidase in bean leaves infected with pathogenic fungi. Acta Biochimica Polonica 43: 679-685

    PubMed  CAS  Google Scholar 

  • Vanacker H, Foyer CH and Carver TLW (1998) Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta 208: 444-452

    Article  Google Scholar 

  • Van den Bosch H, Schutgens RB, Wanders RJ and Tager JM (1992) Biochemistry of peroxisomes. Annual Review of Biochemistry 61: 157-197

    Article  PubMed  CAS  Google Scholar 

  • Van der Vlugt-Bergmans CJB, Wagemakers CAM, Dees DCT and Van Kan JAL (1997) Catalase A from Botrytis cinerea is not expressed during infection on tomato leaves. Physiological and Molecular Plant Pathology 50: 1-15

    Article  CAS  Google Scholar 

  • Van Loon LC and Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55: 85-97

    Article  CAS  Google Scholar 

  • Von Tiedemann A (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology 50: 151-166

    Article  Google Scholar 

  • Von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA and Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiology 119: 1107-1114

    Article  PubMed  Google Scholar 

  • Vuletiü M, Hadži-TaÅ¡koviü Å ukaloviü V and Vuþiniü Ž (2003) Superoxide synthase and dismutase activity of plasma membranes from maize roots. Protoplasma 221 : 73-77

    Article  CAS  Google Scholar 

  • Wendehenne D, Durner J, Chen Z and Klessig DF (1998) Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry 47: 651-657

    Article  CAS  Google Scholar 

  • Wintz H and Vulpe C (2002) Plant copper chaperones. Biochemical Society Transactions 30: 732-735

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochemical Journal 322: 681-692

    PubMed  CAS  Google Scholar 

  • Xiong L, Lee MW, Qi M and Yang Y (2001) Identification of defence-related rice genes by suppression subtractive hybridization and differential screening. Molecular Plant-Microbe Interactions 14: 685-692

    Article  PubMed  CAS  Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T and Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant and Cell Physiology 42: 1012-1016

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lyon, G.D., Goodman, B.A., Williamson, B. (2007). Botrytis cinerea Perturbs Redox Processes as an Attack Strategy in Plants. In: Elad, Y., Williamson, B., Tudzynski, P., Delen, N. (eds) Botrytis: Biology, Pathology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2626-3_8

Download citation

Publish with us

Policies and ethics