Approaches to Molecular Genetics and Genomics of Botrytis

  • Paul Tudzynski
  • Verena Siewers

Molecular genetic techniques have revolutionized the detailed analysis of infection strategies and pathogenicity of Botrytis. Based on the availability of all necessary molecular tools, an impressive (and rapidly growing) number of genes has been functionally analysed by targeted inactivation approaches. The result of these studies, taken together with the new opportunities arising from "genomics" of B. cinerea, has developed into one of the model systems for molecular phytopathology. The methodologies and tools available for the cloning of genes and their functional analysis will be discussed and a compilation given of the deletion mutants obtained so far (dealt with in detail in other chapters). Current trends and perspectives of this rapidly developing field are discussed.

Keywords

Glutathione Lipase Enzymatic Degradation NADPH Catalase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Arranz M, Eslava AP, Diaz-Minguez IM and Benito EP (2003) Hypervirulent strains of Botrytis cinerea show altered respiration. XXII Fungal Genetics Conference, Asilomar (USA) abstract p 385Google Scholar
  2. Balhadere PV, Foster AJ and Talbot NJ (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Molecular Plant-Microbe Interactions 12: 129-142CrossRefGoogle Scholar
  3. Banuett F (2002) Pathogenic development in Ustilago maydis. In: Osiewacz H (ed.) Molecular Biology of Fungal Development. (pp. 349-398) Marcel Dekker, New York, USAGoogle Scholar
  4. Benito EP, Prins T and Van Kan JAL (1996) Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction. Plant Molecular Biology 32: 947-957CrossRefPubMedGoogle Scholar
  5. Bölker M, Böhnert HU, Braun KH, Görl J and Kahmann R (1995) Tagging pathogenicity genes in Ustilago maydis by restriction enzyme mediated integration (REMI). Molecular Genetics 248: 547-552CrossRefGoogle Scholar
  6. Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Brückner B and Tudzynski P (1994) Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analysis. Current Genetics 25: 445-450CrossRefPubMedGoogle Scholar
  7. Catlett NL, Yoder OC and Turgeon BG (2003) Whole genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryotic Cell 2: 1151-1161CrossRefPubMedGoogle Scholar
  8. Choquer M, Boccara M and Vidal-Cros A (2003) A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Current Genetics 43: 303-309CrossRefPubMedGoogle Scholar
  9. Covert SF, Kapoor P, Lee M-H, Briley A and Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycological Research 105: 259-264CrossRefGoogle Scholar
  10. Goûrgûes M, Brunet-Simon A, Lebrun M-H and Levis C (2004) The tetraspanin BcPls1p is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Molecular Microbiology 51: 619-629CrossRefPubMedGoogle Scholar
  11. Hamada W, Reignault P, Bompeix G and Boccara M (1994) Transformation of Botrytis cinerea with the hygromycin b resistance gene, hph. Current Genetics 26: 251-255CrossRefPubMedGoogle Scholar
  12. Hayashi K, Schoonbeek HJ and De Waard MA (2002a) Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demethylation inhibitor fungicides. Pesticide Biochemistry and Physiology 73: 110-121CrossRefGoogle Scholar
  13. Hayashi K, Schoonbeek HJ and De Waard MA (2002b) Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Applied and Environmental Microbiology 68: 4996-5004CrossRefGoogle Scholar
  14. Hilber UW, Bodmer M, Smith FD and Köller W (1994) Biolistic transformation of conidia of Botryotinia fuckeliana. Current Genetics 25: 124-127CrossRefPubMedGoogle Scholar
  15. Huang D, Bhairi S and Staples RC (1989) A transformation procedure for Botryotinia squamosa. Current Genetics 15: 411-414CrossRefGoogle Scholar
  16. Klimpel A, Schulze Gronover C, Williamson B, Stewart JA and Tudzynski B (2002) The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Molecular Plant Pathology 3: 439-450CrossRefGoogle Scholar
  17. Kunz C, Poinssot B, Pugin A and Boccara M (2002) Characterization of a non-pathogenic mutant of Botrytis cinerea. 6th European Conference on Fungal Genetics, Pisa, p. 267Google Scholar
  18. Levis C, Fortini D and Brygoo Y (1997) Transformation of Botrytis cinerea with the nitrate reductase gene (niaD) shows a high frequency of homologous recombination. Current Genetics 32: 157-162CrossRefPubMedGoogle Scholar
  19. Oeser B, Tenberge KB, Moore S, Mihlan M, Heidrich PM and Tudzynski P (2002) Pathogenic development of Claviceps purpurea. In: Osiewacz H (ed.) Molecular Biology of Fungal Development. (pp. 419-455) Marcel Dekker, New York, USAGoogle Scholar
  20. Prins TW, Wagemakers L, Schouten A and Van Kan JAL (2000) Cloning and characterization of a glutathione S-transferase homologue from the plant pathogenic fungus Botrytis cinerea. Molecular Plant Pathology 1: 169-178CrossRefGoogle Scholar
  21. Quidde T, Büttner P and Tudzynski P (1999) Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning and functional analysis of a gene coding for a putative avenacinase. European Journal of Plant Pathology 105: 273-283CrossRefGoogle Scholar
  22. Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring, K-M, Siewers V, Tenberge KB, Tudzynski B and Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Molecular Plant Pathology 5: 17-27CrossRefGoogle Scholar
  23. Rolland S, Jobic C, Fèvre M and Bruel C (2003) Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Current Genetics 44: 164-171CrossRefPubMedGoogle Scholar
  24. Santos M, Vallejo I, Rebordinos L, Guitierrez S, Collado IG and Cantoral JM (1996) An autonomously replicating plasmid transforms Botrytis cinerea to phleomycin resistance. FEMS Microbiological Letters 137: 153-158CrossRefGoogle Scholar
  25. Schoonbeek H, Del Sorbo G and De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions 14: 562-571CrossRefPubMedGoogle Scholar
  26. Schouten A, Wagemakers L, Stefanato FL, Van der Kaaij RM and Van Kan JAL (2002a) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Molecular Microbiology 43: 883-894CrossRefGoogle Scholar
  27. Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B and Van Kan JAL (2002b) Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology 3: 227-238CrossRefGoogle Scholar
  28. Schulze Gronover C, Kasulke D, Tudzynski P and Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions 14: 1293-1302CrossRefGoogle Scholar
  29. Schulze Gronover C, Schorn C and Tudzynski B (2004) Identification of Botrytis cinerea genes up-regulated during infection and controlled by the GĮ subunit BCG1 using suppression subtractive hybridization (SSH). Molecular Plant-Microbe Interactions 17: 537-546CrossRefPubMedGoogle Scholar
  30. Siewers V, Smedsgaard J and Tudzynski P (2004) The P450 monooxygenase BcABA is essential for abscisic acid biosynthesis in Botrytis cinerea. Applied and Environmental Microbiology 70: 3868-3876CrossRefPubMedGoogle Scholar
  31. Soulié M-C, Piffeteau A, Choquer M, Boccara M and Vidal-Cros A (2003) Disruption of Botrytis cinerea class I chitin synthase gene Bcch1 results in cell wall weakening and reduced virulence. Fungal Genetics and Biology 40: 38-46CrossRefPubMedGoogle Scholar
  32. Ten Have A, Mulder W, Visser J and Van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Molecular Plant-Microbe Interactions 11: 1009-1016CrossRefPubMedGoogle Scholar
  33. Tudzynski B and Tudzynski P (2002) Pathogenicity factors and signal transduction in plant-pathogenic fungi. Progress in Botany 63: 163-188Google Scholar
  34. Valette-Collet O, Cimerman A, Reignault P, Levis C and Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Molecular Plant-Microbe Interactions 16: 360-367CrossRefPubMedGoogle Scholar
  35. Van Kan JAL, Va'nt Klooster JW, Wagemakers CAM, Dees DCT and Van der Vlugt-Bergmans CJB (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Molecular Plant-Microbe Interactions 10: 30-38CrossRefPubMedGoogle Scholar
  36. Verhoeff K, Malathrakis NE and Williamson B (1992) Recent Advances in Botrytis Research. Pudoc Scientific Publishers, Wageningen, The NetherlandsGoogle Scholar
  37. Viaud M, Brunet-Simon A, Brygoo Y, Pradier J-M and Levis C (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Molecular Microbiology 50: 1451-1465CrossRefPubMedGoogle Scholar
  38. Zheng L, Campbell M, Murphy J, Lam S and Xu JR (2000) The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions 13: 724-732CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Paul Tudzynski
    • 1
  • Verena Siewers
    • 1
  1. 1.Institut für Botanik und Botanischer GartenWestfälische Wilhelms-UniversitätGermany

Personalised recommendations