Skip to main content

Taxonomy and Genetic Variation of Botrytis and Botryotinia

  • Chapter
Botrytis: Biology, Pathology and Control

The species of the anamorphic genus Botrytis and its associated Botryotinia teleomorphs are briefly assessed. Recent progress in understanding the genetics of variation in the polyphagous B. cinerea (teleomorph Bt. fuckeliana) is summarised, with emphasis on chromosome complement and extrachromosomal elements. Sexual and vegetative compatibility studies are reviewed in relation to the limited evidence of clonality revealed by DNA population markers. It is concluded that in contrast to the traditional view of this species, sexual reproduction plays a major role in determining variation whereas heterokaryosis plays only a limited role. Evidence supporting the existence of a second polyphagous species within B. cinerea sensu lato is discussed. The limited knowledge of the genetics of the hostrestricted species is briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Albertini C, Thebaud G, Fournier E and Leroux P (2002) Euburicol 14D-demethylase gene (CVP51) polymorphism and speciation in Botrytis cinerea. Mycological Research 106: 1171-1178

    Article  CAS  Google Scholar 

  • Alfonso C, Raposo R and Melgarejo P (2000) Genetic diversity in Botrytis cinerea populations on vegetable crops in greenhouses in south-eastern Spain. Plant Pathology 49: 243-251

    Article  Google Scholar 

  • Beever RE and Parkes SL (1993) Mating behaviour and genetics of fungicide resistance of Botrytis cinerea in New Zealand. New Zealand Journal of Crop and Horticultural Science 21: 303-310

    Google Scholar 

  • Beever RE and Parkes SL (2003) Use of nitrate non-utilising (Nit) mutants to determine vegetative compatibility in Botryotinia fuckeliana (Botrytis cinerea). European Journal of Plant Pathology 109: 607-613

    Article  CAS  Google Scholar 

  • Bergquist RR and Lorbeer JW (1972) Apothecial production, compatibility and sex in Botryotinia squamosa. Mycologia 64: 1270-1281

    Article  Google Scholar 

  • Bergquist RR and Lorbeer JW (1973) Genetics of variation in Botryotinia squamosa. Mycologia 65: 36-47

    Article  CAS  Google Scholar 

  • Boland GJ (1992) Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 14: 10-17

    Article  CAS  Google Scholar 

  • Brasier CM (1997) Fungal species in practice: identifying species units in fungi. In: Claridge MF, Dawah HA and Wilson MR (eds) Species: The Units of Biodiversity. (pp. 135-170) Chapman & Hall, London, UK

    Google Scholar 

  • Bridge P, Couteaudier Y and Clarkson J (1998) Molecular Variability of Fungal Pathogens. CAB International, Wallingford, UK

    Google Scholar 

  • Brygoo Y, Caffier V, Carlier J, Fabre JV, Fernandez D, Giraud T, Mourichon X, Neema C, Notteghem JL, Pope C, Tharreau D and Lebrun MH (1998) Reproduction and population structure in phytopathogenic fungi. In: Bridge P, Couteaudier Y and Clarkson J (eds) Molecular Variability of Fungal Pathogens. (pp. 133-146) CAB International, Wallingford, UK

    Google Scholar 

  • Buchwald NF (1953) Botryotinia (Sclerotinia) globosa sp. n. on Allium ursinum, the perfect stage of Botrytis globosa Raabe. Phytopathologische Zeitschrift 20: 241-254

    Google Scholar 

  • Buck KW (1998) Molecular variability of viruses of fungi. In: Bridge P, Couteaudier Y and Clarkson J (eds) Molecular Variability of Fungal Pathogens. (pp. 53-72) CAB International, Wallingford, UK

    Google Scholar 

  • Büttner P and Tudzynski P (1996) Variation in DNA content and chromosome numbers of Botrytis cinerea. Abstract in: Programme and Book of Abstracts: XI International Botrytis Symposium. Wageningen, The Netherlands, p.13

    Google Scholar 

  • Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Brückner B and Tudzynski P (1994) Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Current Genetics 25: 445-450

    Article  PubMed  Google Scholar 

  • Castro M, Kramer K, Valdivia L, Ortiz S, Benavente J and Castillo A (1999) A new double-stranded RNA mycovirus from Botrytis cinerea. FEMS Microbiology Letters 175: 95-99

    Article  CAS  PubMed  Google Scholar 

  • Castro M, Kramer K, Valdivia L, Ortiz S and Castillo A (2003) A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiology Letters 228: 87-91

    Article  CAS  PubMed  Google Scholar 

  • Chun SJ and Lee YH (1997) Inheritance of dsRNA in the rice blast fungus Magnaporthe grisea. FEMS Microbiology Letters 148: 159-162

    Article  CAS  PubMed  Google Scholar 

  • Coenen A, Kevei F and Hoekstra R (1997) Factors affecting the spread of double-stranded RNA viruses in Aspergillus nidulans. Genetical Research (Cambridge) 69: 1-10

    Article  CAS  Google Scholar 

  • Coppin E, Debuchy R, Arnaise S and Picard M (1997) Mating types and sexual development in filamentous Ascomycetes. Microbiology and Molecular Biology Reviews 61: 411-428

    CAS  PubMed  Google Scholar 

  • Correll JC and Gordon TR (1999) Population structure of Ascomycetes and Deuteromycetes. In: Worrall JJ (ed.) Structure and Dynamics of Fungal Populations. (pp. 225-250) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Covert SF (1998) Supernumerary chromosomes in filamentous fungi. Current Genetics 33: 311-319

    Article  CAS  PubMed  Google Scholar 

  • Daboussi MJ (1996) Fungal transposable elements: generators of diversity and genetic tools. Journal of Genetics 75: 325-339

    Article  CAS  Google Scholar 

  • Dawe AL and Nuss DL (2001) Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annual Review of Genetics 35: 1-29

    Article  CAS  PubMed  Google Scholar 

  • De Miccolis Angelini RM, Santomauro A, De Guido MA, Pollastro S and Faretra F (2002). Genetics of anilinopyrimidine-resistance in Botryotinia fuckeliana (Botrytis cinerea). Abstracts Book of the 6th European Conference on Fungal Genetics, Pisa, Italy, p. 434

    Google Scholar 

  • De Miccolis Angelini RM, Milicevic T, Natale P, Lepore A, De Guido MA, Pollastro S, Cvjetkovic B and Faretra F (2004) Botryotinia fuckeliana isolates carrying different transposons show differential response to fungicides and localization on host plants. Journal of Plant Pathology (in press)

    Google Scholar 

  • Debets AJM (1998) Parasexuality in fungi: mechanisms and significance in wild populations. In: Bridge P, Couteaudier Y and Clarkson J (eds) Molecular Variability of Fungal Pathogens. (pp. 41-52) CAB International, Wallingford, UK

    Google Scholar 

  • Delcán J and Melgarejo P (2002) Mating behaviour and vegetative compatibility in Spanish populations of Botryotinia fuckeliana. European Journal of Plant Pathology 108: 391-400

    Article  Google Scholar 

  • Deng F, Melzer MS and Boland GJ (2002) Vegetative compatibility and transmission of hypovirulence-associated dsRNA in Sclerotinia homoeocarpa. Canadian Journal of Plant Pathology 24: 481-488

    Google Scholar 

  • Diolez A, Marches F, Fortini D and Brygoo Y (1995) Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Applied and Environmental Microbiology 61: 103-108

    CAS  PubMed  Google Scholar 

  • Elliott ME (1964) Self-fertility in Botryotinia porri. Canadian Journal of Botany 42: 1393-1395

    Article  Google Scholar 

  • Faretra F and Antonacci E (1987) Production of apothecia of Botryotinia fuckeliana (de Bary) Whetz. under controlled environmental conditions. Phytopathologia Mediterranea 26: 29-35

    Google Scholar 

  • Faretra F and Grindle M (1992) Genetic studies of Botryotinia fuckeliana (Botrytis cinerea). In: Verhoeff K, Malathrakis NE and Williamson B (eds) Recent Advances in Botrytis Research. (pp. 7-17) Pudoc Scientific Publishers, Wageningen, The Netherlands

    Google Scholar 

  • Faretra F and Pollastro S (1991) Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea). Mycological Research 8: 943-951

    Article  Google Scholar 

  • Faretra F and Pollastro S (1993) Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana (Botrytis cinerea) from nine countries. Plant Pathology 42: 48-57

    CAS  Google Scholar 

  • Faretra F and Pollastro S (1996) Genetic studies of the phytopathogenic fungus Botryotinia fuckeliana (Botrytis cinerea) by analysis of ordered tetrads. Mycological Research 100: 620-624

    Article  Google Scholar 

  • Faretra F, Antonacci E and Pollastro S (1988) Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. Journal of General Microbiology 134: 2543-2550

    Google Scholar 

  • Faretra F, Pollastro S, Santomauro A and Miazzi M (1996). Genetics of Botryotinia fuckeliana (Botrytis cinerea): an overview. In: Programme and Book of Abstracts of the XI International Botrytis Symposium. Wageningen, The Netherlands, p. 11

    Google Scholar 

  • Farr DF, Bills GF, Chamuris GP and Rossman AY (1989) Fungi on Plants and Plant Products in the United States. American Phytopathological Society Press, St. Paul, Minnesota, USA

    Google Scholar 

  • Ford EJ, Miller RV and Sherwood JE (1995) Heterokaryon formation and vegetative compatibility in Sclerotinia sclerotiorum. Mycological Research 99: 241-247

    Article  Google Scholar 

  • Fournier E, Giraud T, Loiseau A, Vautrin D, Estoup A, Solignac M, Cornuet JM and Brygoo Y (2002) Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Molecular Ecology Notes 2: 253-255

    Article  CAS  Google Scholar 

  • Fournier E, Levis C, Fortini D, Leroux P, Giraud T and Brygoo Y (2003) Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus and its use as a population marker. Mycologia 95: 251-261

    Article  CAS  Google Scholar 

  • Free SJ, Holtz BA and Michailides TJ (1996) Mating behavior in field populations of Monilinia fructicola. Mycologia 88: 208-211

    Article  Google Scholar 

  • Ghabrial SA (1994) New developments in fungal virology. Advances in Virus Research 43: 303-388

    Article  CAS  PubMed  Google Scholar 

  • Giraud T, Fortini D, Levis C, Leroux P and Brygoo Y (1997) RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular and Biological Evolution 14: 1177-1185

    CAS  Google Scholar 

  • Giraud T, Fortini D, Levis C, Lamarque C, Leroux P, LoBuglio K and Brygoo Y (1999) Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology 89: 967-973

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Jacobson DJ and Shiu PKT (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annual Review of Genetics 34: 165-186

    Article  CAS  PubMed  Google Scholar 

  • Godfrey GH (1923) Gray mold of castor bean. Journal of Agricultural Research 23: 679-716

    Google Scholar 

  • Gregory PH (1949) Studies on Sclerotinia and Botrytis II. De Bary's description and specimens of Peziza fuckeliana. Transactions British Mycological Society 30: 1-13

    Article  Google Scholar 

  • Griffiths AJF (1995) Natural plasmids of filamentous fungi. Microbiological Reviews 59: 673-685

    CAS  PubMed  Google Scholar 

  • Griffiths AJF, Collins, RA and Nargang FE (1995) Mitochondrial genetics of Neurospora. In: Kück U (ed.) The Mycota II Genetics and Biotechnology. Springer-Verlag, Berlin,

    Google Scholar 

  • Germany Grindle M (1979) Phenotypic differences between natural and induced variants of Botrytis cinerea. Journal of General Microbiology 111: 109-120

    Google Scholar 

  • Hansen HN (1938) The dual phenomenon in imperfect fungi. Mycologia 30: 442-455

    Article  Google Scholar 

  • Harrington TC and Rizzo DM (1999) Defining species in the fungi. In: Worrall JJ (ed.) Structure and Dynamics of Fungal Populations. (pp.43-121) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Harrison JC (1988) The biology of Botrytis spp. on Vicia beans and chocolate spot disease - a review. Plant Pathology 37: 168-201

    Article  Google Scholar 

  • Hennebert GL (1963) Les Botrytis des Allium. Mededelingen Van de Landbouwhogeschool En de Opzoekingsstations Van de Staat Te Gent 28: 851-876

    Google Scholar 

  • Hennebert GL (1973) Botrytis and Botrytis-like genera. Persoonia 7: 183-204

    Google Scholar 

  • Hennebert GL and Groves JW (1963) Three new species of Botryotinia on Ranunculaceae. Canadian Journal of Botany 41: 341-373

    Article  Google Scholar 

  • Hiratsuka K, Namba S, Yamashita S and Doi Y (1987) Linear plasmid-like DNA's in the fungus Botrytis cinerea. Annals of the Phytopathological Society of Japan 53: 638-642

    CAS  Google Scholar 

  • Holst-Jensen A and Schumacher T (1994) Sclerotiniaceous species on Rubus chamaemorus: morphoanatomical and RFLP studies. Mycological Research 98: 923-930

    Article  Google Scholar 

  • Holst-Jensen A, Vaage M and Schumacher T (1998) An approximation to the phylogeny of Sclerotinia and related genera. Nordic Journal of Botany 18: 705-719

    Article  Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T and Johansen S (1999) Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Molecular Biological Evolution 16: 114-126

    CAS  Google Scholar 

  • Howitt, RLJ (1998) Characterisation of mycoviruses in the plant pathogenic fungus, Botrytis cinerea. PhD thesis, University of Auckland, New Zealand.

    Google Scholar 

  • Howitt RLJ, Beever RE, Pearson MN and Forster RLS (1995) Presence of double-stranded RNA and virus-like particles in Botrytis cinerea. Mycological Research 99: 1472-1478

    Article  CAS  Google Scholar 

  • Howitt RL, Beever RE, Pearson MN and Forster RL (2001) Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant 'potex-like' viruses. Journal of General Virology 82: 67-78

    CAS  PubMed  Google Scholar 

  • Huang J, Hsieh TF, Chastagner GA and Hsiang T (2001) Clonal and sexual propagation in Botrytis elliptica. Mycological Research 105: 833-842

    Article  Google Scholar 

  • Hutson R and Mansfield J (1980) A genetical approach to the analysis of mechanisms of pathogenicity in Botrytis/Vicia faba interactions. Physiological Plant Pathology 17: 309-317

    CAS  Google Scholar 

  • Jarvis WR (1977) Botryotinia and Botrytis Species: Taxonomy, Physiology, and Pathogenicity. Research Branch, Canada Department of Agriculture, Ottawa, Canada

    Google Scholar 

  • Jarvis WR (1980) Taxonomy. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis. (pp. 1-18) Academic Press, London, UK

    Google Scholar 

  • Kerssies A, Bosker-Van Zessen AI, Wagemakers CAM and Van Kan JAL (1997) Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Disease 81: 781-786

    Article  Google Scholar 

  • Kidwell MG and Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55: 1-24

    CAS  PubMed  Google Scholar 

  • Kohn LM (1979a) A monographic revision of the genus Sclerotinia. Mycotaxon 9: 365-444

    Google Scholar 

  • Summers RW, Heaney SP and Grindle M (1984) Studies of a dicarboximide resistant heterokaryon of Botrytis cinerea. British Crop Protection Conference: Pests and Disease 2: 453-458

    Google Scholar 

  • Sun D (1989) Heterokaryosis in Botrytis squamosa. Acta Mycologica Sinica 8: 311-315

    Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS and Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21-32

    Article  CAS  PubMed  Google Scholar 

  • Thompson JR and Latorre BA (1999) Characterization of Botrytis cinerea from table grapes in Chile using RAPD-PCR. Plant Disease 83: 1090-1094

    Article  CAS  Google Scholar 

  • Tolmsoff WJ (1983) Heteroploidy as a mechanism of variability among fungi. Annual Review of Phytopathology 21: 317-340

    Article  Google Scholar 

  • Typas M, Mavridou A and Kramer K (1998) Mitochondrial DNA differences provide maximum intraspecific polymorphism in the entomopathogenic fungi Verticillium lecanii and Metarhizium anisopliae, and allow isolate detection/identification. In: Bridge P, Couteaudier Y and Clarkson J (eds) Molecular Variability of Fungal Pathogens. (pp. 227-238) CAB International, Wallingford, UK

    Google Scholar 

  • Uhm JY and Fuji H (1983) Heterothallism and mating type mutation in Sclerotinia trifoliorum. Phytopathology 73: 569-572

    Article  Google Scholar 

  • Vallejo I, Carbú M, Muñoz F, Rebordinos L and Cantoral J.M. (2002) Inheritance of chromosome-length polymorphisms in the phytopathogenic ascomycete Botryotinia fuckeliana (anam. Botrytis cinerea). Mycological Research 106: 1075-1085

    Article  CAS  Google Scholar 

  • Vallejo I, Santos M, Cantoral JM, Collado IG and Rebordinos L (1996) Chromosomal polymorphism in Botrytis cinerea strains. Hereditas 124: 31-38

    Article  Google Scholar 

  • Van den Ende E and Pennock I (1996) The perfect stage of Botrytis elliptica. In: Book of Abstracts of the XI International Botrytis Symposium. Wageningen, The Netherlands, p.16

    Google Scholar 

  • Van den Ende JE and Pennock-Vos IMG (1997) Primary sources of inoculum of Botrytis elliptica in lily. Acta Horticulturae No. 430: 591-595

    Google Scholar 

  • Van der Vlugt-Bergmans CJB, Brandwagt BF, Van't Klooster JW, Wagemakers CAM and Van Kan JAL (1993) Genetic variation and segregation of DNA polymorphisms in Botrytis cinerea. Mycological Research 97: 1193-1200

    Article  Google Scholar 

  • Van Kan JAL, Goverse A and Van der Vlugt-Bergmans CJB (1993) Electrophoretic karyotype analysis of Botrytis cinerea. Netherlands Journal of Plant Pathology 99: 119-128

    Article  CAS  Google Scholar 

  • Vilches S and Castillo A (1997) A double-stranded RNA mycovirus in Botrytis cinerea. FEMS Microbiological Letters 155: 125-130

    Article  CAS  Google Scholar 

  • Weeds PL, Beever RE and Long PG (1998) New genetic markers for Botrytis cinerea (Botryotinia fuckeliana). Mycological Research 102: 791-800

    Article  CAS  Google Scholar 

  • Wu TH and Lu JY (1991) A new species of Botryotinia - the teleomorph of Botrytis fabae Sardiña. Acta Mycologia Sinica 10: 27-30

    CAS  Google Scholar 

  • Yamamoto W (1959) Species of the Sclerotiniaceae in Japan. Transactions of the Mycological Society Japan 2: 2-8

    Google Scholar 

  • Yohalem DS, Nielsen K and Nicolaisen M (2003) Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotaxon 85: 175-182

    Google Scholar 

  • Yourman LF, Jeffers SN and Dean RA (2000) Genetic analysis of isolates of Botrytis cinerea sensitive and resistant to benzimidazole and dicarboximide fungicides. Phytopathology 90: 851-859

    Article  CAS  PubMed  Google Scholar 

  • Yunis H and Elad Y (1989) Survival of dicarboximide-resistant strains of Botrytis cinerea in plant debris during summer in Israel. Phytoparasitica 17: 13-21

    Article  Google Scholar 

  • Zolan ME (1995) Chromosome-length polymorphism in fungi. Microbiological Reviews 59: 686-698

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Beever, R.E., Weeds, P.L. (2007). Taxonomy and Genetic Variation of Botrytis and Botryotinia. In: Elad, Y., Williamson, B., Tudzynski, P., Delen, N. (eds) Botrytis: Biology, Pathology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2626-3_3

Download citation

Publish with us

Policies and ethics