Skip to main content

Detection of Parent Molecules in Comets using UV and Visible Spectroscopy

  • Chapter
The New Rosetta Targets

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 311))

Abstract

A new method for detecting and characterizing comets is presented. Theoretical calculations using CS2 as an example are presented to support the possibility of using this method to identify parent molecules in comets. Laboratory experiments are suggested that can be used to provide the kind of data that is needed to make this proposal successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A’ Hearn, M. F. (2003). Private Communication.

    Google Scholar 

  • Barry, M. D., Johnson, N. P., and Gorry, P. A. (1986). A fast (30 µs) pulsed supersonic nozzle beam source: application to the photodissociation of carbon disulfide at 193 nm. Journal of Physics E: Scientific Instruments, 19 (10): 815–819.

    Article  ADS  Google Scholar 

  • Black, G. and Jusinski, L. E. (1986). Branching ratio for S(3P) and S(1D2) atom production in the photodissociation of CS2. Chemical Physics Letters, 124 (1): 90–92.

    Article  ADS  Google Scholar 

  • Brus, L. E. (1971). Two exponential decay of 3,371 laser excited CS2 fluorescence. Chemical Physics Letters, 12 (1): 116–119.

    Article  ADS  Google Scholar 

  • Dornhoefer, G., Hack, W., and Langel, W. (1984). Electronic excitation and quenching of CS formed in the ArF laser photolysis of CS2. Journal of Physical Chemistry, 88: 3060–3069.

    Article  Google Scholar 

  • Douglas, A. E. (1966). Anomalously long radiative lifetimes of molecular excited states. Journal of Chemical Physics, 45 (3): 1007–1015.

    Article  ADS  Google Scholar 

  • Frey, J. G. and Felder, P. (1996). Photodissociation of CS2 at 193 nm investigated by polarised photofragment translational spectroscopy. Chemical Physics, 202(2–3):397–406.

    Google Scholar 

  • Hara, K. and Phillips, D. (1978). Fluorescence of CS2 excited to the third excited singlet state. Journal of the Chemical Society Faraday Transactions II, 74(8):1441–1445.

    Google Scholar 

  • Heicklen, J. (1963). The fluorescence of carbon disulfide vapor. Journal of the American Chemical Society, 85 (22): 3562–3565.

    Article  Google Scholar 

  • Hemley, R. J., Leopold, D. G., Roebber, J. L., and Vaida, V. (1983). The direct ultraviolet absorption spectrum of the transition of jet-cooled carbon disulfide. Journal of Chemical Physics, 79 (11): 5219–5227.

    Article  ADS  Google Scholar 

  • Huang, J. H., Xu, D. D., Fink, W. H., and Jackson, W. M. (2001). Photodissociation of the dibromomethane cation at 355 nm by means of ion velocity imaging. Journal of Chemical Physics, 115 (13): 6012–6017.

    Article  ADS  Google Scholar 

  • Huebner, W. F., Keady, J. J., and Lyon, S. P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophysics and Space Science, 195 (1): 1–294.

    Article  ADS  Google Scholar 

  • Jackson, W. M., Butterworth, P. S., and Ballard, D. (1986). The orogin of CS in Comet IRASAraki-Alcock 1983d. Astrophysical Journal, 304 (1): 515–518.

    Article  ADS  Google Scholar 

  • Jackson, W. M. and Xu, D. D. (2000). Photodissociation of the acetone cation at 355 nm using the velocity imaging technique. Journal of Chemical Physics, 113(9):3651–3657.

    Google Scholar 

  • Jackson, W. M. and Donn, B. (1966). Collisional processes in the inner coma. Memories de la Societe Royale des Sciences de Liege, Collection in VIII, 12 (1): 133–140.

    Google Scholar 

  • Jungen, Ch., Malm, D. N., and Merer, A. J. (1973). Analysis of transition of CS2 in the near ultraviolet. Canadian Journal of Physics, 51: 1471–1490.

    Article  ADS  Google Scholar 

  • Jungen, Ch., Malm, D. N., and Merer, A. J. (1972). Ultraviolet absorption of CS2 near the N2 laser wavelengths (3,371°A). Chemical Physics Letters, 16 (2): 302–305.

    Article  ADS  Google Scholar 

  • Kasahara, H., Mikami, N., Ito, M., Iwata, S., and Suzuki, I. (1984). Excitation and dispersed fluorescence spectra of the 1transition of jet-cooled CS2. Chemical Physics, 86 (1–2): 173–188.

    Article  ADS  Google Scholar 

  • Kitsopoulos, T. N., Gebhardt, C. R., and Rakitzis, T. P. (2001). Photodissociation study of CS2 at 193 nm using slice imaging. Journal of Chemical Physics, 115 (21): 9727–9732.

    Article  ADS  Google Scholar 

  • Kleman, B. (1963). The near-ultraviolet absorption spectrum of CS2. Canadian Journal of Physics, 41: 2034–2036.

    Article  ADS  Google Scholar 

  • Lambert, C. and Kimbell, G. H. (1973). The fluorescence of CS2 vapor (collisional quenching). Canadian Journal of Chemistry, 51 (16): 2601–2608.

    Article  Google Scholar 

  • Liou, H. T., Yang, H., Wang, N. C., and Joy, R. W. (1991) Successive single rotational level radiative decay lifetime measurements of CS2: evidence of state mixing caused by rotational coupling. Chemical Physics Letters, 178 (1): 80–88.

    Article  ADS  Google Scholar 

  • Loge, G. W., Tiee, J. J., and Wampler, F. B. (1986). Fluorescence lifetimes and Zeeman quantum beats of single rotational levels in3B2 carbon disulfide. Chemical Physics, 84(7):3624–3629. Mank, A., Starrs, C., Jego, M. N., and Hepburn, J. W. (1996). A detailed study of the predissociation dynamics of the state of CS2. Journal of Chemical Physics, 104(10):3609–3619.

    Google Scholar 

  • McCrary, V. R., Lu, R., Zakheim, D., Russell, J. A., Halpern, J. B., and Jackson, W. M. (1985). Coaxial measurement of the translational energy distribution of carbon monosulfide (CS) produced in the laser photolysis of carbon disulfide at 193 nm. Journal of Chemical Physics, 83 (7): 3481–3490.

    Article  ADS  Google Scholar 

  • McGivern, W. S., Sorkhabi, O., Rizvi, A. H., Suits, A. G., and North, S. W. (2000). “Photofragment traslational spectroscopy with state-selective-universal detection”: The ultraviolet photodissociation of CS2. Journal of Chemical Physics, 112 (12): 5301–5307.

    Article  ADS  Google Scholar 

  • Mikami, N., Kasahara, H., and Ito, M. (1981). SVL fluorescence spectra from the 1B2 state of CS2 cooled in a supersonic free jet. Chemical Physics Letters, 83 (3): 488–492.

    Article  ADS  Google Scholar 

  • Mills, J. W. and Zare, R. H. (1970). Magnetic depolarization of CS2 vapour fluorescence. Chemical Physics Letters, 5 (1): 37–41.

    Article  ADS  Google Scholar 

  • Mulliken, R. S. (1958). The lower excited states of some simple molecules. Canadian Journal of Chemistry, 36: 10–23.

    Article  Google Scholar 

  • NIST Chemistry WebBook (2003). http://webbook.nist.gov/chemistry.

    Google Scholar 

  • Ochi, N., Watanabe, H., Tsuchiya, S., and Koda, S. (1987). Rottationally resolved laser-induced fluorescence and Zeeman quantum beat spectroscopy of the V 1B2 of jet-cooled CS2. Chemical Physics, 113 (2): 271–285.

    Article  ADS  Google Scholar 

  • Orita, H., Morita, H., and Nagakura, S. (1981). Collisional quenching constants and collision-free lifetimes of fluorescence of gaseous carbon disulfide. Chemical Physics Letters, 81(1):33– 36.

    Google Scholar 

  • Pique, J. P., Manners, J., Sitja, G., and Joyeux, M. (1992). Intra-inter polyad mixing and breaking of symmetric-antisymmetric selection rule in the vibrational spectra of CS2 molecule. Journal of Chemical Physics, 96 (9): 6495–6508.

    Article  ADS  Google Scholar 

  • Rabalais, J. W., McDonald, J. M., Scherr, V., and McGlynn, S. P. (1971). Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic groupings containig sixteen valence electrons. Chemical Reviews, 71: 73–108.

    Article  Google Scholar 

  • Silvers, S. J. and McKeever, M. R. (1976). Time and frequency resolution of CS2 fluorescence excited by a nitrogen laser. Chemical Physics, 18 (3–4): 333–339.

    Article  ADS  Google Scholar 

  • Tzeng, W. B., Yin, H. M., Leung, W. Y., Luo, J. Y., Nourbakhsh, S., Flesch, G. D., and Ng, C. Y. (1988). A 193 nm laser photofragmentation time-of-flight mass spectrometric study of CS2 and CS2 clusters. Journal of Chemical Physics, 88 (3): 1658–1669.

    Article  ADS  Google Scholar 

  • Waller, I. M. and Hepburn, J. W. (1987). Photofragment spectroscopy of CS2 at 193 nm: direct resolution of singlet and triplet channels. Journal of Chemical Physics, 87 (6): 3261–3268.

    Article  ADS  Google Scholar 

  • Xu, D. D., Huang, J. H., and Jackson, W. M. (2004). Reinvestigation of CS2 dissociation at 193 nm by means of product state-selective VUV laser ionization and velocity imaging. Journal of Chemical Physics, in press.

    Google Scholar 

  • Xu, D. D., Price, R. J., Huang, J. H., and Jackson, W. M. (2001). Photodissociation of the ethyl bromide cation at 355 nm by means of TOF-MS and ion velocity imaging techniques. Zeitschrift fur Physikalische Chemie, 215 (2): 253–271.

    Google Scholar 

  • Yang, S. C., Freedman, A., Kawasaki, M., and Bersohn, R. (1980). Energy distribution of the fragments produced by photodissociation of CS2 at 193 nm. Journal of Chemical Physics, 72 (7): 4058–4062.

    Article  ADS  Google Scholar 

  • Zhang, Q. and Vaccaro, P. H. (1995). Ab Initio studies of electronically excited carbon disulfide. Journal of Physical Chemistry, 99: 1799–1813.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jackson, W.M., Scodinu, A. (2004). Detection of Parent Molecules in Comets using UV and Visible Spectroscopy. In: Colangeli, L., Epifani, E.M., Palumbo, P. (eds) The New Rosetta Targets. Astrophysics and Space Science Library, vol 311. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2573-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2573-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6683-1

  • Online ISBN: 978-1-4020-2573-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics